
AN EXPLORATORY STUDY ON A LINEAR MODEL
FOR MEASURING SOFTWARE QUALITY

Angel R. Puerta and Charles L. Carnal

Tennessee Technological University
Cookeville, Tennessee

Puerta, A.R., and Carnal, C. An Exploratory Study on a Linear Model for Measuring Software
Quality. 1989 IEEE SouthEastCon, Columbia, South Carolina, April 1989.

Abstract

A pilot study was conducted to develop a linear regression model to
measure software quality. The model incorporated four quality components
representing efficiency, understandability, modifiability, and implementation of
requirements. Halstead measures were used as regressors along with a
programmer rating. The study employed a group of second semester FORTRAN
programming students who implemented the same program individually. A
series of standard tests were utilized to measure the quality components.

The results showed linear dependency of all quality components, except
understandability, on Halstead metrics. The efficiency, modifiability, and
requirements components were expressed using only Volume, Level, and
Programming Time metrics. Thus, those three measures appear as the most
promising for validation research. However, the best correlations for each quality
component were given by the programmer rating suggesting that non-linear
solutions might be more appropriate.

Introduction

Software reliability and software quality assurance are two aspects of
software engineering that have lagged somewhat behind other parts of the
development methodology. One of the reasons for this problem is the fact that
there is no standard or concrete way of measuring the quality of a program. In
this paper, software quality is defined as a relative measure of the degree to
which a program is expected to satisfy its requirements, deliver usable services,
and at the same time be concise, consistent, efficient, maintainable, portable,
and understandable. This study concerned itself with exploring the possibility of
using some well-known software metrics to construct a software quality metric.

The importance of obtaining such a metric is visible from two different stages of
the software development cycle. In the pre-testing stage, a project manager
could use quality metrics to determine the kind and level of testing that must be
used. In the post-testing stage, quality metrics could be used to compare
functionally similar programs. It would be safe to assume that, with the rising
cost in software production and maintenance, the present trend towards
automatic programming and reusability of software will be strongly encouraged.
It would be crucial then to have a standard or universal way of assessing the
quality of software.

Most work on this area up to now has dealt with identifying the factors that
affect software quality. As Curtis has reported, Boehm, Brown, Kaspar, and Mc
Call have developed models which intuitively cluster software characteristics

related to quality [4]. However, these approaches fail to either rank or quantify
the parameters included in the models. In addition, extensive work has been
performed on various software metrics which measure diverse software
characteristics such as complexity, error proneness, and reliability. Kafura [8],
Shen [16], and Davis [6], have evaluated the merits and shortcomings of several
of these metrics.

Many of the factors affecting software quality that have been identified by
researchers can be seen in part as functions of the complexity and size of the
program, and the capabilities of the programmers and managers. This will
include, but is not limited to, testability, efficiency, legibility, and structuredness.
There are a number of ways to quantify complexity in a program. The best
known metrics which provide such feature are McCabe's [11] and Halstead's [7].
These metrics have been extensively validated and compared [1-4,9,12,14-15].
Other quality factors, like portability, can depend on hardware as well as
software. Of course, not all factors can be maximized for any particular program
and some factors can be of no significance for a particular application. In
general, little progress has been made in quantifying these factors, establishing
their relative importance in the overall quality picture, and identifying their
interrelationships.

In our study, we explore the possibility that some relationship might exist
between Halstead's measures, programmer ratings, and software quality.
Halstead measures were chosen because research shows that they are among
the most promising metrics available [6,8,16]. A group of second semester
programming students were assigned the same program to be completed
individually. The grade point average of each student was used as a
programmer rating. The resulting programs were measured for completeness of
requirements, efficiency, understandability, and modifiability against a series of
standard tests. Then, multivariate linear regression was utilized to derive
correlations and linear models using the programmer rating and Halstead metrics
as regressors.

Halstead Measures

The best known and most thoroughly studied of what are classified as
composite measures of complexity emerge from Halstead's theory of software
science [7]. It is suggested to the interested reader that he refers to the original
manuscript by Halstead for a good understanding of these metrics. Halstead
argued that algorithms have measurable characteristics analogous to physical
laws. His model is based on four different parameters: the number of distinct

operators (instruction types, keywords, etc.) in a program, called n1; the number
of distinct operands (variables and constants), n2; the total number of
occurrences of the operators, N1; and, the total number of occurrences of the
operands, N2. The sum of n1 and n2 is denoted as n while the sum of N1 and
N2 is called N.

From those four counts, a number of useful measures can be obtained.
The number of bits required to specify the program is called the volume V of the
program and is obtained through the equation

V = N log2 n (1)

The program level which is the difficulty of understanding a program is calculated
by

L = (2n2)/(n1N2) (2)

and the intelligence content of a program is given by

I = L x V (3)

In an attempt to include the psychological aspects of complexity in the
measures, Halstead studied the cognitive processes related to the perception
and retention of simple stimuli. Research by Stroud [17] had shown that the
mean number of mental discriminations per second in an average human being,
also called the Stroud number, is between 5 and 20. Halstead uses 18 as a
reference point for his studies. In his model, the number of discriminations made
in the preparation of a program, called effort, is given by

E = V/L (4)

The programming time, T, is an estimate of the number of mental
discriminations necessary to complete a program divided by the average number
of discriminations per second or Stroud number, S. It is important to note that
this estimate assumes that the programmer is devoting all of its discriminations to
the programming task. Therefore, the estimate is a minimum value since, in

reality, the programmer would use some mental effort on non-related tasks.

All of these measures are valid under the assumption that the program is
"pure," i.e., free of so-called "poor programming practices." Halstead defines six
classes of impurities, among them, synonymous operands, unfactored
expressions, and common subexpressions. The complete description of these
and other impurities is beyond the scope of this paper. However, for the
programs used for this paper, all recognizable impurities were eliminated prior to
obtaining the corresponding Halstead measures.

The Experiment

The four major components of the experiment setup were the study group,
the program, the quality indexes, and the regression methodology.

The population studied consisted of a section of 43 second semester
FORTRAN programming students. A total of 13 subjects were rejected for either
not completing the assignment or turning in programs which were judged not to
have been completed individually. The grade point average of the students in
technical courses was taken as a programmer rating, PR.

The program to be completed required the students to read several lists of
integers under a pre-defined criteria, merge, sort, and print the resulting lists.
This program was chosen because, in spite of its small size, it offered a variety of
ways to be implemented. The development of the program was divided into two
phases. In the first phase, the program was coded and debugged until the first
successful compilation. Thus, the program at such point was free of syntax
errors. This stage would correspond in the usual software life cycle to the
moment immediately prior to unit testing. After completion of the first phase, the
Halstead measures V, L, I, E, and T were obtained. During the second phase,
the subjects discovered and removed existing errors until the program was
brought into full functionality. The amount of time used for debugging and testing
purposes, TDEB, and the number of errors found, ERR, were recorded. These
two measures were later used to validate the quality indexes calculated during
the testing period.

Four independent quality indexes were computed using a battery of
standard tests. A requirements index, QR, was given to reflect the number of
requirements successfully implemented in each program. An efficiency index,
QE, represented the c.p.u. time used by the program to run a standard set of
data. An understandability index, QU, and a modifiability index, QM, were
assigned subjectively by three distinct evaluators. Although such a methodology

does not allow the repeatability necessary for validation research, it is
appropriate for pilot or exploratory studies. The QE index was validated against
ERR while QM was validated against TDEB.

Linear regression using least-square estimators was employed with each
of the quality indexes to obtain the respective linear models. The variables PR,
V, L, I, E, and T were used as regressors. The regression proceeded in the
forward direction meaning that the most significant variable was added first to the
model. The weight of each variable was given by its level of significance which
had a lower limit of 0.5. Such a high limit is due to the exploratory nature of the
study. A statistic developed by Mallows [5,10], C(p), served to determine the
ideal number of variables in the model. Graphing p, the number of variables in a
model plus the intercept, against C(p) provides the ideal value when p first
approaches C(p). Thus, some variables which meet the level of significance
criteria may be excluded from the model if the graph so determines it.

The Results

The main results derived were the four linear models which looked as
follows:

QR = aPR - bL + cT - dI + e (5)

QE = aPR + bT - cE - d (6)

QM = aPR - bV + cT - dE + e (7)

QU = aPR - b (8)

The order of inclusion for the variables in each model is from left to right. The
actual value of the coefficients is not relevant in this type of study but rather the
sign of each parameter is of more interest.

The conclusiveness of the linearity of each model was determined using
the F statistical value. All four models were above the threshold value, thus
confirming the significance of their linearity. Each model, except QU, showed
dependency on Halstead measures. The lack of correlation between the metrics
and QU is probably due to the possibility of improving understandability, with for
example indentation, without changing the number of operands and operators in
the program.

The programmer rating consistently delivered the highest correlation with
the quality indexes. While this is not surprising, it is nevertheless somewhat
disappointing. Clearly, a sound quality metric cannot be based mainly on
subjective quantifiers like programmer ratings. The failure of the Halstead
metrics to outperform the ratings suggests that either the measures are not good
candidates for quality metrics or that non-linear relationships may be more
appropriate.

On the plus side, QR, QE, and QM, are all dependent on L, T, and V if we
take into account the relationships of equations 3-4. The indication here is that
these three may be explored further to ascertain their potential as parameters in
quality metrics. Noticeably, all the coefficients for the programming time, T, are
greater than zero. The implication is that the programs requiring more time and
mental discriminations to complete are of better quality. It should be observed
that all of the results apply to programs which implement the same set of
requirements. Therefore, a model developed using this methodology would be
useful for selecting the best product among a set of similar, reusable modules.
For the interested reader, a detailed account of all the models and the statistical
values obtained can be found in reference 13.

Summary

A pilot study was conducted to assess the feasibility of using Halstead
measures to develop a software quality metric. A FORTRAN program was
assigned to a group of students and a set of four quality indexes was computed
from those programs. The measures along with a programmer rating were used
as regressors in a distinct linear model for each index.

Although linear models were derived for three of the four indexes which
included the Halstead measures, in each case the programmer rating showed a
better correlation than any of the measures. The three models can be expressed
in terms of the program volume, the program level, and the programming time.
Thus, L, V, and T could be further researched to establish more solid linear
relation hips or explore non-linear versions.

References

[1] B. Beizer, "Software System Testing and Quality Assurance," Van

Nostrand Reinhold, New York, 1984.

[2] P. C. Belford and R. A. Berg, "Central Flow Control Software
Development: A Case Study of the Effectiveness of Software Engineering
Techniques," Proceedings of the Fourth International Conference on
Software Engineering, Munich, September 1979.

[3] B. Curtis, et al., "Third Time Charm: Stronger Predictions of Programmer
Performance by Software Complexity Metrics," Proceedings of the Fourth
International Conference on Software Engineering, Munich, 1979.

[4] B. Curtis, "The Measurement of Software Quality and Complexity,"
Software Metrics, ed. by A. Perlis, et al., MIT Press, Cambridge, 1981.

[5] C. Daniel and F. Wood, "Fitting Equations to Data," John Wiley & Sons,
New York, 1980.

[6] J. S. Davis and R. J. LeBlanc, "A Study of the Applicability of Complexity
Measures," IEEE Transactions on Software Engineering, Volume SE-14,
Number 9, September 1988, pp. 1366-1371.

[7] M. H. Halstead, "Elements of Software Science," Elsevier North-Holland,
New York, 1977.

[8] D. Kafura and G. R. Reddy, "The Use of Software Complexity Metrics in
Software Maintenance," IEEE Transactions on Software Engineering,
Volume SE-13, Number 3, March 1987, pp. 335-343.

[9] M. Lipow and T. A. Thayer, "Prediction of Software Failures," Proceedings
to the Annual Symposium on Reliability and Maintainability, January 18-
20, 1977.

[10] C. L. Mallows, "Some Comments on Cp," Technometrics, Number 15,
1973.

[11] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, Volume SE-2, Number 4, December 1976, pp. 308-320.

[12] L. M. Ottenstein, "Quantitative Estimates of Debugging Requirements,"
IEEE Transactions on Software Engineering, Volume SE-5, Number 5,
September 1979, pp. 504-514.

[13] A. R. Puerta, "A Linear Regression Approach to Develop a Software
Quality Metric Based on Halstead Measures," M.S. Thesis, Tennessee
Technological University, 1987.

[14] N. F. Schneidewind, "Software Metrics for Aiding Program Development
Debugging," Proceedings of the 1979 National Computer Conference,
Montvale, New Jersey, 1979.

[15] N. F. Schneidewind and H. M. Hoffman, "An Experiment in Software Error
Data Collection and Analysis," IEEE Transactions on Software
Engineering, Volume SE-5, Number 3, May 1979, pp. 276-286.

[16] V. Y. Shen, et al., "Software Science Revisited: A Critical Analysis of the
Theory and its Empirical Support," IEEE Transactions on Software
Engineering, Volume SE-9, Number 2, March 1983, pp. 155-165;

[17] J. M. Stroud, "The Fine Structure of Psychological Time," Annals of New
York Academy of Sciences, pp. 623-631, 1966.

