The Mecano Project: Enabling User-Task Automation
During I nterface Development

Angel R. Puerta

Knowledge Systems L aboratory
Section on Medical Informatics
MSOB x215
Stanford, CA 94305-5479
puerta@camis.stanford.edu - http://camis.stanford.edu/people/puerta

Abstract

We propose that automation of user tasks can only be
properly addressed as a particular problem of
adaptation in human-computer interaction. We
further claim that to achieve such automation, the
ability to define, edit, and infer from models of user
interfaces is needed. We introduce The Mecano
Project, a model-based interface development
environment that allows precisely such capabilities.
Finally, we describe how some traditional approaches
to user-task automation, including machine learning
techniques and programming by demonstration, can
be incorporated into Mecano and have a higher
potential of being successful.

I ntroduction

The issue of user-task automation has been of importance
to severd artificial intelligence subfields for a number of
years. A variety of approaches have been attempted with a
relative degree of success. These approaches include,
among others, machine learning techniques,
demonstrational interfaces, and automated generation of
knowledge acquisition tools (Cypher, 1991; Puerta, 1990)

Notwithstanding the potential usefulness shown by many
of the techniques mentioned, there is ample evidence of
serious limitations with each approach. Such limitations
are usualy caused by a lack of knowledge about the user
task that must be automated, and also about the meaning
of the user actions from which inferences must be drawn.
Thus, many machine learning algorithms make
generalizations that, although justified by the applied
learning technique, fail to be effective within the context
of the user’s task. Furthermore, demonstrational interfaces
tend occasionally to automate user tasks for which the user
does not want automation, or reach generalizations in such
a way that the automation becomes a burden on the user
instead of a supporting process. Additionally, in the case

of knowledge-acquisition tool generators, the knowledge
about the user-task is so incomplete, or even non-existent,
that generation can only be accomplished for simple, well-
structured tasks that allow very little flexibility to the tool
users.

The limitations of current approaches arise from a
common source: the lack of, or disregard for, foundation
knowledge about the interaction process from which
inferences must be made and for which tools are being
generated. For example, machine learning techniques may
employ sophisticated algorithms to infer generalizations of
an user’s actions, yet not use much knowledge about what
are the goals of those actions, the application domain, or
the interaction dialog dictated by the user interface. A
similar argument can be made against knowledge-
acquisition tool generators that attempt to automate tasks
but employ no task-specific knowledge during the
generation process (Puerta, 1990).

In this paper, | make two fundamental claims regarding
the automation of user tasksin a computer system:

(1) Automation of user tasks really means adaptation
of the computer system to the user needs. Adaptation
can take place at the level of the user task itself, asis
the case in programming by demonstration interfaces,
or it can take place a the level of the computer
system. In the latter case, it is called self-adaptation
and it affects the way the system reacts to its own
success or failure in adapting to a user. An example of
this situation is a machine-learning technique that
improves its performance over in recognizing
sequences of user actions and automating their
execution.

(2) Adaptation of the system to the user is by
definition a human-computer interaction problem.

Therefore, any attempts at automating user tasks must
take place within the context of this general problem.
Knowledge about the characteristics of the interface of
a computer system is essentia to any approach
towards automation. Disregard for such knowledge
will result inevitably in techniques which either fail or
face serious limitations.

Acceptance of the above principles brings up immediately
the question of how do we acquire, manage, and process
the interface knowledge that is required for adaptation. In
any human-computer interaction situation, we will need
explicit knowledge about the user task, the application
domain, the user, and the interface dialog and
presentation. This knowledge is likely to be available only
if we design interfaces based on such knowledge sources
by using sophisticated development environments that
allow editing of the required knowledge and that provide
automated generation facilities. This is the premise of an
emerging technology called model-based interface
development. In this paper, | propose that by using this
technology we can produce interfaces where sufficient
knowledge about the interaction process is available,
thereby providing the foundation for any techniques that
attempt to automate user tasks. The remaining sections of
the paper describe the technology, our own perspective at
implementing it with a development environment called
Mecano, and a proposal describing how to use techniques,
such as demonstrational interfaces, within the context of
M ecano-produced interfaces.

The Model-Based Approach to I nterface
Development

The paradigm of model-based interface development has
attracted a high degree of interest in the last few years due
to its high potential for producing integrated user interface
development environments with support for all phases of
interface design and implementation. This type of
environments are not available commercialy .

The basic premise of model-based technology is that
interface development can be fully supported by a generic,
declarative model of all characteristics of a user interface,
such as its presentation, dialog, and associated domain,
user, and user task characteristics. As depicted in Figure 1,
with such model at hand, suites of tools that support
editing and automated manipulation of the model can be
built so that comprehensive support of design and
implementation is possible. Typically, users of model-
based environments refine the given generic model into an
application-specific interface model using the tools

available within the environment. A runtime system then
executes the refined model as a running interface.

The benefits of model-based development are manifold. By
centralizing interface information, model-based systems
offer support within a single environment for high-level
design as well as for low-level implementation detalls.
Global changes, design visualization, prototyping,
consistency of resulting interfaces, and software
engineering principles in general are much improved over
currently available tools, such as interface builders, which
offer only partial and localized development support.
Over the past few years, several model-based systems
(Foley at al., 1991; Johnson, Wilson and Johnson, 1994;
Puerta et al., 1994; Szekely, Luo and Neches, 1993;
Vanderdonckt and Bodart, 1993; Wiecha et a., 1990)
have demonstrated the feasibility of the model-based
approach.

Design

Exploration

Automatic F/y Presentation
Design Dialogue

Application

Design
Assistants / Tasks

Generic

¥ ["Refinements

Figure 1. The model-based paradigm. Design tools
operate on a generic interfface model to produce an
application-specific refined model that is then executed by
aruntime system.

Workplace

Platform

Behavior

R

Runtime
System

Generated
Interface

Despite all the potential shown, model-based technology is
struggling to find its way out of the laboratories. This is
due mainly to the absence of one of the key elements
needed by the technology to truly prosper. There are two
central ingredients for success in model-based systems: (1)
A declarative, complete, and versatile interface model that
can express a wide variety of interface designs, and (2) a
sufficiently ample supply of interface primitives, elements
such as push-buttons, windows, dialog boxes, and similar
that a model-based system can treat as black boxes. The
need for the first ingredient is clear: without a vocabulary
rich enough to express most interface designs, the
technology is useless. The second ingredient is also
critical because model-based approaches fail if developers
are required to model too low-level details of interface

elements—a problem painfully demonstrated by the
erroneous modeling abstraction levels of some model-
based systems, especially early ones.

Whereas there is little question that good sets of interface
primitives are available in most platforms, researchers
have fallen short of producing effective interface models.
The problems with current interface models can be
summarized as follows:

Partial models. Models constructed up-to-date deal
only with a portion of the spectrum of interface
characteristics. Thus, there are interface models that
emphasize user tasks (Johnson, Wilson and Johnson,
1994), target domains (Puerta et al., 1994),
presentation guidelines (Vanderdonckt and Bodart,
1993), or application features (Szekely, Luo and
Neches, 1993). These models generally fail when an
interface design puts demands on the model beyond
the respective emphasis aress.

Insufficient underlying model. Severa model-based
systems use modeling paradigms proven successful in
other application areas, but that come up short for
interface development. The Entity-Relationship
model, highly effective in data modeling, has been
applied with limited success in interface modeling
(Foley et al., 1991; Vanderdonckt and Bodart, 1993).
These underlying models typically result in partia
interface models of restricted expressiveness.
System-dependent models. Many interface models are
non-declarative and are embedded implicitly into their
associated model-based system, sometimes at the code
level. The models are tied to the interface generation
schema of their system, and are therefore unusable in
any other environment.

Inflexible models. Experience with model-based
systems suggests that interface developers many times
wish to change, modify, or expand the interface model
associated with a particular model-based environment.
However, model-based systems do not offer facilities
for such modifications, nor the interface models in
guestion are defined in a way that modifications can
be easily accomplished.

Private models. Interested developers or researchers
wishing to obtain a generic interface model from one
of the currently available model-based systems,
quickly find that there is no version of an interface
model that is publicly available, or even obtainable via
a licensing agreement. The inability to produce an
interface model fit for distribution to third parties is
one of the maor shortcomings of model-based
technology.

The Mecano Project

To address the limitations outlined above, we started at the
end of 1994 The Mecano Project. This project draws from
our own experience building Mecano (Puerta et al.,
1994)—a model-based system where interface generation
is driven by a model of an application domain—and from
our examination of several model-based systems built in
the past few years. The project encompasses two phases:
(1) Development of a comprehensive interface model, and
(2) Implementation of a model-based environment based
on the model obtained in (1).

Phase one: Theinterface modd.

In this phase, we define a generic interface model with a
high degree of completeness, portability, and
independence from a corresponding model-based system.
The interface model is available as a resource to the HCI
community.

The requirements of completeness, flexibility, and system
independence of an interface model are very difficult to
achieve within a monolithic structure for interface
modeling, asis the case with current model-based systems.
Even the most elaborate interface model will run into
difficulties if changes or extensions are needed.
Furthermore, the idea that a single generic interface model
that can express most interfaces can be defined is
debatable at best, and certainly contrary to experience
gathered with the use of model-based systems.

‘ Meta-Level Modeling: ’ Organization and

MIMIC Structure
define
Generic Models:
‘ MIM Vocabulary
refine into
Interface

Application-Specific
Models

Specifications

Figure 2. A multilevel approach to interface modeling.

The key reasons why interface models lack flexibility are
first that they were never designed with the intention of
being changed once implemented, and second, but perhaps
more importantly, that they lack a description of the
organization and structure of the model. Without such
description, it is difficult to understand the role played in
an interface design by the different interface elements
being modeled, and it is aso hard to visualize the
relationships among those elements. As a consequence,
tools cannot be built to support the model expansion
process, and manual changes are coding exercises usually
only accessible to the original designers of the interface
model.

In The Mecano Project, we overcome the various
limitations of current interface models by means of a
modeling approach at multiple levels of abstraction, as
shown in Figure 2. The result is an interface modeling
language, called MIMIC, that can be used to express both
generic and application-specific interface models. We also
provide one generic model called the Mecano Interface
Model, or MIM. The MIMIC language follows the
following principles:

Explicit representation of organization and structure
of interface models. MIMIC provides a metalevel for
modeling that assigns specific roles to each interface
element, and that provides the constructs to relate
interface elements among themselves. There is no
fixed way to relate elements, so developers are free to
build their own schema (e.g., building a Petri Net of
dialog elements).

No single generic model. We have discarded the idea
that a single, all-encompassing generic interface
model can be built successfully as previously assumed.
Instead, MIMIC supports the definition of generic
interface models. We provide one such generic model
in MIM and our model-based system will support that
generic model. However, we envision that developers,
and the HCI community in general, will produce a
number of such generic models, or extensions of
generic models, that are suited for specific user tasks,
application domains, or given platforms.

Explicit interface design representation. Interface
models written with MIMIC will define not only
interface elements, but aso characteristics of the
design process for the modeled interface. This is a
feature lacking in all previous schema for interface
modeling, but it is a crucia one if we are to give
developers access to and control of the automated
processes of interface generation in model-based
systems.

Phase two: The M ecano modd-based environment.

In this phase, we implement a model-based environment,
cadled Mobi-D (Model-Based Interface Designer) that
supports interface generation based on the phase-one
interface model. The main components of Maobi-D can be
seen in Figure 3. The system has three main features:

User-centered interface development in an integrated
and comprehensive environment. Developers build
interfaces manipulating abstract objects such as user
tasks and domain objects. The production of
presentation styles and dialogs is automated in most
part by the environment.

Transparent modeling language. Developers do not
need to know the MIMIC modeling language. The
environment tools provide the functionality to achieve
editing operations without directly manipulating
language structures.

Open architecture. Third-party developers can
enhance the environment by incorporating their own
design tools. Such tools need only to adhere to the
MIMIC language. This feature is key in supporting
machine-learning and other techniques for user-task

automation.
Model Editing Model Refinement
Tool Tool

Interface
Model

4

Interface Preview

| Run-Time System U Tool

Figure 3. The Mobi-D development environment.

Discussion

The model-based approach and the Mecano environment
are to be seen as enabling technologies for adaptation and
automation of user tasks. The Mecano framework
facilitates design-time and runtime capabilities for
automation that can be utilized by traditional artificial-
intelligence approaches to user-task automation.

Any tool or technique that targets user automation can
take advantage of the open nature of the Mobi-D
architecture. Thus, for example, a programming-by-

demonstration tool can be incorporated into Mobi-D as a
runtime tool that operates on the generated interface.
Other tools and techniques can be used at appropriate
times in the development process. The only requirement is
that these tools be able to read and write the MIMIC
language

The main advantage of Mecano, however, is not in the
open nature of its architecture. The key gain is that any
inferences made by any tools associated with Mecano are
done within the context of an interface model. Therefore,
Mecano tools can directly relate their reasoning to the user
tasks, goals, and preferences that drive the interaction
process. In general, the inability to do so has been a
shortcoming of many Al approaches to user automation.

User-task automation requires the coexistence of useful
reasoning techniques and comprehensive knowledge bases
of the interface and its users. Mecano provides the
infrastructure to develop such knowledge bases and to
incorporate tools based on appropriate reasoning
techniques for user-task automation.

References

Cypher, A. Programming Repetitive Tasks by Example, ,
in Proceedings of CHI’91 Conference on Human Factors
on Computing Systems, pp. 33-39.

Foley, J., Kim, W., Kovacevic, S. and Murray, K., UIDE -
An Intelligent User Interface Design Environment, in J.
Sullivan and S. Tyler (eds.), Architectures for Intelligent
User Interfaces: Elements and Prototypes, Addison-
Wesley, 1991, pp. 339-384.

Johnson P., Wilson, S. and Johnson, H. Scenarios, Task
Anaysis And The Adept Design Environment, in J.
Carroll (ed.), Scenario Based Design, Addison Wedley,
1994.

Puerta, A., Eriksson, H., Gennari, JH., and Musen, M.A.
Model-Based Automated Generation of User Interfaces, in
Proceedings of AAAI'94 (Seattle, July 31 to August 4
1994), AAAI Press, pp. 471-477.

Puerta, A. L-CID: A Blackboard Framework to
Experiment with Self-Adaptation in Intelligent Interfaces,
Ph.D. Dissertation, University of South Carolina, July
1990.

Szekely, P., Luo, P., and Neches, R. Beyond Interface
Builders: Model-Based Interface Tools, in Proceedings of

INTERCHI'93 (Amsterdam, Netherlands. April, 1993),
ACM Press, pp. 383-390.

Vanderdonckt, J. M., Bodart, F. Encapsulating Knowledge
for Intelligent Automatic Interaction Objects Selection, in
Proceedings of INTERCHI'93 (Amsterdam, Netherlands.
April, 1993), ACM Press, pp. 424-429.

Wiecha, W. Bennett, S. Boies, J. Gould and S. Greene.
ITSS A Tool For Rapidly Developing Interactive
Applications. ACM Transactions on Information Systems
8(3), July 1990. pp. 204-236.

