
A Multiple-Method Knowledge-Acquisition Shell for the Automatic Generation 
of Knowledge-Acquisition Tools

Angel Puerta, John Egar, Samson Tu, and Mark Musen
Medical Computer Science Group
Knowledge Systems Laboratory

Stanford University
Stanford, CA, 94305-5479
puerta@camis.stanford.edu

Abstract

The use of predefined models of problem-solving methods is receiving considerable attention from researchers in the
area of knowledge acquisition. Using these models, developers of knowledge-acquisition tools are able to prescribe the
roles in which knowledge is used in completing a given task. A number of method-oriented architectures based on a
single problem-solving method have been developed by various research groups. Because the methods are
domain-independent, method-oriented architectures are limited by the fact that knowledge roles that depend on
domain-specific considerations cannot be represented using the model of problem solving. In addition, the interface
between the knowledge-acquisition tool and the application expert cannot adequately convey the role of each
knowledge type in the task model. PROTÉGÉ-II is a knowledge-acquisition shell that we are building to generate
knowledge-acquisition tools automatically without presupposing a specific model of problem-solving. The shell
manages a library of mechanisms—procedures of grain size smaller than that of problem-solving methods.
Mechanisms can be combined in PROTÉGÉ-II to construct problem-solving methods and to define the roles of
knowledge that depend on domain considerations. Furthermore, PROTÉGÉ-II utilizes the concept of adaptation in
interfaces to allow the knowledge engineer to produce interfaces that are task- and domain-specific. In this paper, we
present the PROTÉGÉ-II shell and examine the components of its architecture. We also demonstrate the use of
PROTÉGÉ-II with a running example, and discuss the design techniques used to overcome the limitations of
method-specific architectures.

1. Method-Oriented Architectures

A recent focus of research in knowledge acquisition is the use of models of domain-independent problem-solving
methods to construct knowledge-acquisition tools [McDermott, 1988]. These models of problem solving, such as
heuristic-classification [Clancey, 1985] and skeletal-plan refinement [Friedland and Iwasaki, 1985], allow a knowledge
engineer to develop a model of the task area at hand in terms of the abstract problem-solving method. Thus, task- and
domain-specific knowledge-acquisition tools can be obtained from a task- and domain-independent model. Since the
problem-solving models are independent of any knowledge-representation formalism, the modeling of tasks occurs at
the knowledge level [Newell, 1982], where only the role of each type of knowledge is specified, as opposed to at the
symbol level, where the representation of each type of knowledge must be described. There are several examples of
knowledge-acquisition tools built from models of problem solving. ROGET [Bennett, 1985] used a specialized form
of the heuristic-classification method to acquire knowledge for diagnostic tasks. SALT [Marcus and McDermott, 1989]
used a propose-and-revise method for configuration tasks.

There is also another category comprising tools that operate at a metalevel. These tools are able to generate
knowledge-acquisition tools automatically from a model of a task. Examples of this type of tool are PROTÉGÉ
[Musen, 1989a; Musen, 1989b], which is method-oriented, and DOTS [Eriksson, 1990], which does not follow a given
problem-solving method.

PROTÉGÉ, which was developed in our laboratory, views the problem of automating the construction of
knowledge-acquisition tools as one of generating an interface to a knowledge editor that is utilized by an application



expert. The components of the interface are determined by a task model developed from the method of skeletal-plan
refinement [Musen and Tu, 1991]. PROTÉGÉ makes extensive use of graphical interaction modalities, such as
graphical editors, which are especially well suited for capturing procedural knowledge (e.g., a flowchart diagram).
Because the interfaces are based on the task model for the domain of interest, PROTÉGÉ-generated tools can guide
the user through the acquisition sessions, ensuring that the knowledge captured is complete and consistent with respect
to that model [Musen et al., 1987].

Like other method-oriented knowledge-acquisition tools, PROTÉGÉ suffers because its domain-independent
problem-solving method cannot define the role of domain-dependent control knowledge. For example, in the domain
of cancer therapy, there is no way for the knowledge engineer to use the skeletal-refinement method to declare how the
effects of various specifications for altering the dose of a drug should be combined, because the concept of a dose
adjustment is a domain-specific one. In these instances, a knowledge engineer must fall from the knowledge level to
the symbol level to enter the required knowledge in a particular representation (e.g., by specifying a production rule or
by changing the ordering of rules).

Our current research aim is to identify building blocks, called mechanisms, of a grain size finer than that of
problem-solving methods, that can be (1) combined to construct problem-solving methods, and (2) applied to define
the role of domain-dependent knowledge [Tu et al., 1991]. Our approach is essentially empirical in that we hope to
identify several of these mechanisms from the problem-solving methods being applied in our current development of
various medical expert systems. After the mechanisms are identified, we will test their applicability to other tasks and
domains, and their combinability into problem-solving methods different from the ones from which they were
extracted.

Other groups are carrying out parallel research to find ways to define the roles of domain-dependent and
domain-independent knowledge at the knowledge level. Examples are Chandrasekaran’s research on generic tasks
[Chandrasekaran, 1986], Steels’ work on the componential framework [Steels, 1990], and McDermott’s study of
role-limiting methods [McDermott, 1988].

1.1. A New PROTÉGÉ

The use in our group of mechanisms for the generation of knowledge-acquisition tools has dictated the need for
reimplementation of PROTÉGÉ. To address this need, we are developing PROTÉGÉ-II, a knowledge-acquisition shell
that provides a task-modeling environment for knowledge engineers and a knowledge-editing environment for
application experts. The shell is independent of methods, tasks, and domains. PROTÉGÉ-II will allow the definition
of knowledge roles at the knowledge level for both domain-dependent and domain-independent knowledge. This shell
will permit the construction of problem-solving methods using mechanisms as building blocks, the modeling of
application tasks in terms of the constructed methods, the generation of knowledge editors based on those task models,
and the acquisition of knowledge from such knowledge editors.

In creating PROTÉGÉ-II, we have to remove two fundamental types of limitations in PROTÉGÉ: limitations produced
by presupposition of a problem-solving method, and limitations produced by presupposition of an interface style. We
have mentioned the limitations caused by the single-method problem. The limitations imposed by the interface style,
however, may be just as crucial. PROTÉGÉ has no flexibility in presenting the contents of a knowledge base to the
application expert. The presentation style is fixed, and is based on the model of skeletal plan-refinement, which is
domain-independent. Therefore, regardless of the task or domain, similar types of knowledge are always presented in
the same style to the application expert. The lack of flexibility in the style of the interface in PROTÉGÉ is due to the
absence of adaptation capabilities in the generated interfaces. Adaptation is the process of varying the contents and
behavior of an interface based on the characteristics of the interaction. Whereas adaptation in interfaces is usually
related to the characteristics of the user, the features of the task and domain of the interaction are relevant as well
[Puerta, 1990; Rissland, 1984]. To be able to generate interfaces to knowledge editors without knowing a priori the
problem-solving method used for task modeling, PROTÉGÉ-II must provide the means for the generated interfaces to
adapt to the task and domain of interest.

In this paper, we present the implementation of the method-independent PROTÉGÉ-II shell. In describing the system,
we show the techniques applied to overcome the limitations of the original version of PROTÉGÉ. In particular, we
show how the construction of problem-solving methods from mechanisms can be achieved using a librarylike storage–
retrieval system and a graphical editing environment. We also describe the use of two formal languages developed to



provide adaptability in the interfaces generated by PROTÉGÉ-II. We claim that these languages provide independence
from task and domain considerations in the interface-generation process, and give the knowledge engineer freedom to
select specific presentation styles for each type of knowledge to be captured in the knowledge editors. Through the use
of a user-interface management system (UIMS), PROTÉGÉ-II provides consistency in the interaction with the user
throughout the various phases of knowledge-editor generation, and coordinates the complex relationships among
interface components. Through the use of PROTÉGÉ-II, we hope to show how knowledge-acquisition tools can benefit
from having access to multiple problem-solving methods and from presenting task-specific and domain-specific
interfaces to the application expert.

The remainder of this paper is organized as follows. Section 2 introduces terminology necessary for the rest of the
discussion. Section 3 offers an overview of the PROTÉGÉ-II system, describing the various subsystems in the shell
and their role in the process of knowledge-editor generation. Section 4 presents an example of the use of PROTÉGÉ-II.
Note that, since PROTÉGÉ-II is in a prototype stage, only part of the functionality described in Section 3 will be
demonstrated in Section 4. To conclude, Section 5 discusses several research issues associated with the development
and use of PROTÉGÉ-II.

2. Key Concepts

It is important that the concepts associated with the words task and method in PROTÉGÉ-II be specified clearly. In this
section, we present these concepts along with definitions for the building blocks of the knowledge-level model of
PROTÉGÉ-II (problem-solving mechanisms), and the two basic operations on these building blocks allowed by
PROTÉGÉ-II: method configuration and method assembly. Given that the focus of this paper is on the architectural
concept of PROTÉGÉ-II and its related human–computer interaction issues, our description of problem-solving
mechanisms is intended to merely anchor the subsequent discussions. A more complete presentation of our views on
methods and mechanisms has been presented elsewhere [Musen and Tu, 1991; Tu et al., 1991].

2.1. Tasks

A task in PROTÉGÉ-II is an activity, or an abstraction of an activity, in the real world. A task accepts some type of
input and produces some type of output. The domain to which the task is applied determines the type of inputs accepted
and the type of outputs produced.

Just as important as saying what a task is, is defining what a task is not. For our purposes, a task by itself is not a
composite structure. Thus, it does not support a view of subtasks, or a decomposition into a hierarchy of subtasks. Such
decompositions are possible, but only in the context of a problem-solving method, as shown is Section 2.3. In addition,
a task does not impose a requirement on the type of knowledge needed to complete that task. This perspective is in
contrast with the view of other researchers [Vanwelkenhuysen and Rademakers, 1990], but allows us to specify cleanly
the functionality of PROTÉGÉ-II based on the manipulation of mechanisms and methods.

2.2. Mechanisms

A mechanism in our library is a procedure that completes, or solves, a task. It is a specification of how a task is
accomplished. There is a many-to-many relationship between tasks and mechanisms that will serve as a base for
defining the processes of method configuration and method assembly. The finite set of tasks that can be completed
using a given mechanism is defined as that mechanism’s target; the finite set of mechanisms that can complete a task
is referred to as that task’s source.

A mechanism imposes on its target tasks various requirements that determine what types of knowledge and data must
be available to solve the task with that mechanism. In our implementation, these requirements derive from the
components that make up a mechanism. These components are as follows [Musen and Tu, 1991]:

1. An input–output (I/O) declaration: The input declaration stipulates what inputs are required by the mechanism.
The output declaration determines the target tasks of the mechanism.

2. A global data model: This component specifies the type of input data that the mechanism accepts and the type
of output it produces, and the classes of operations that can be performed on the data.

3. A set of semantic constraints: This set defines relationships between inputs and outputs; thus, knowledge to
verify the constraints must be accessible in the task.



4. A control- and data-flow configuration: The particular configuration used by a mechanism dictates that certain
types of knowledge about the task be readily obtainable to allow the defined flow to operate. In other words,
decisions that alter the flow of data or control may be dependent on certain knowledge about the task.

2.3. Methods

The union of the target tasks of all mechanisms in the PROTÉGÉ-II library neither is a complete set of all possible
tasks, nor is intended to be one. There will be tasks that will fall outside the target of any of the existing mechanisms.
It is possible, nevertheless, to assemble two or more mechanisms into a method. Mechanisms and methods hold the
same many-to-many relationship with tasks. The target tasks of methods, however, are different in nature from the
target tasks of mechanisms. Figure 1 illustrates this situation. So that we can differentiate the two types of tasks
distinguishable when tasks are linked to methods or mechanisms, we call those that are part of a mechanism’s target
simple tasks, and call those belonging to a method’s target composite tasks. A method in our library is a procedure that
decomposes a composite task into subtasks, some of which may be composite as well. The decomposition process
continues until all composite tasks and subtasks are reduced to simple subtasks. At this point, mechanisms can be
applied to complete, or solve, the simple subtasks and, consequently, the original composite task. In addition to the
requirements imposed on the tasks by the mechanisms making up a method, there may be requirements imposed on
the composite task by the method itself. These requirements result from the assembly of the mechanisms into a
procedure—the method—that has an overall data- and control-flow configuration.

Figure 1. Methods, mechanisms, and tasks. In (a), a task is considered simple when it can be
completed with a mechanism. In (b), a task is composite (noted by the shadowed outline) when
it must be decomposed, perhaps recursively, into simple tasks, as imposed by a method, before
a result can be obtained. A subtask is just a task that forms part of a task decomposition.

2.4. Method Configuration

The process of determining which mechanism, or method, should solve each subtask in a task decomposition is called
method configuration. As shown in Figure 2, method configuration connects a task with a mechanism, or with a
method, in the task’s source. It is only when this connection is made that the task becomes composite or simple. If the
task is connected to a mechanism, then it is considered simple. If it is connected to a method, then it is viewed as
composite and must be broken into subtasks. After task decomposition is achieved, we complete the configuration
process by configuring single mechanisms for each of the resulting simple subtasks.

composite
task

task mechanism

method

subtask

subtask

subtask

composite
subtask

method

mechanism

result

mechanism

mechanism

mechanism

mechanism

mechanism

subtask

subtask

subtask

result

result

result

result

result

result

(a)

(b)



Figure 2. Method configuration. Configuring a method consists of establishing a link between
a task and a mechanism, or a method, in the task’s source. The same task can be viewed by
PROTÉGÉ-II as simple or composite, depending on the link.

2.5. Method Assembly

The process of defining a new target by combining two or more mechanisms into a method is called method assembly
and is illustrated in Figure 3. Putting together several mechanisms defines a task decomposition, which in turn
determines a target of composite tasks fitting such decomposition.

Figure 3. Method assembly. When a method is assembled through a combination of two or
more mechanisms, a task decomposition for the method results. The task decomposition
specifies how a composite task must be decomposed into subtasks so that the method can be
used to solve the composite task. This task decomposition also defines a set of target composite
tasks that can be decomposed in the manner dictated by the decomposition.

Note that the task decomposition resulting from the method assembly is what permits method configuration on the
assembled method to take place at a later time. Although a method is assembled with individual mechanisms,
PROTÉGÉ-II views each method by only that method’s task decomposition. Therefore, at method-configuration time,
PROTÉGÉ-II looks for the mechanisms that can complete the subtasks in the method’s task decomposition. These
mechanisms include, but are not limited to, the ones with which the method was assembled originally.

3. The PROTÉGÉ-II Shell

PROTÉGÉ-II is a general-purpose knowledge-acquisition environment that assists knowledge engineers in creating
specialized knowledge-acquisition tools (knowledge editors) that are used by application experts to enter knowledge

task
a

composite
task

a

configuration link

configuration link

task a
source

mechanism
a

mechanism
b

method a

task
decomposition

method a
target



into a knowledge base. Thus, PROTÉGÉ-II is considered a metatool. Unlike the original implementation of
PROTÉGÉ, the reimplementation described in this paper does not require users to define knowledge in terms of a
presupposed problem-solving method. Instead, users are given the ability to configure or assemble methods that will
solve satisfactorily the class of tasks at hand.

Figure 4 shows an overview of the architecture of PROTÉGÉ-II. Knowledge engineers use the system to configure or
assemble a method and, eventually, to develop a model of the task area for which knowledge is to be acquired. The
system generates automatically a knowledge editor, which interacts with application experts to capture task-specific
knowledge. A method- and domain-independent advice system uses the contents of the knowledge base and the given
method to produce responses to its end users.

Figure 4. The PROTÉGÉ-II knowledge-acquisition shell. A knowledge engineer uses the
facilities of the library of mechanisms to construct a problem-solving method. This method
dictates how a model of the task is developed. Based on the task model, the knowledge engineer
uses the user-interface management system to generate a knowledge editor. The application
expert enters knowledge into a knowledge base using the editor. The knowledge base is
ultimately utilized by an advice system that solves problems according to the constructed
problem-solving method.

By providing configuring and assembling capabilities, PROTÉGÉ-II allows knowledge engineers to custom-tailor
problem-solving methods for specific tasks. Furthermore, the resulting methods will have sufficient semantics for users
to define at the knowledge level the roles that the entered knowledge will play in problem solving [Musen and Tu,
1991]. The previous PROTÉGÉ implementation forced users to define many of these roles at the symbol level.

3.1. General System Architecture

The architecture of PROTÉGÉ-II has two main subsystems (see Figure 4). Method assembly and configuration are
conducted using the library of mechanisms. Task modeling and knowledge-editor generation are accomplished through
the UIMS. This latter subsystem also defines the appearance and behavior of the generated interfaces, and the control
of their various interface components. In Sections 3.2 through 3.4 these subsystems are described in further detail. The
library of mechanisms was designed to overcome the limitations imposed in PROTÉGÉ by the assumption of a singular

knowledge
engineer

application
expert

end
user

knowledge
editor

advice
system

problem-
solving
method

knowledge
base

PROTEGE II

library
of

mechanisms

user-interface
management

system

task
model



problem-solving method. The UIMS was created to provide a high degree of freedom in the specification of the
interaction style of the generated interfaces.

3.2. The Library of Mechanisms

The main function of the library of mechanisms is to provide the knowledge engineer with the facilities to look up
mechanisms and methods, and to configure, or assemble, these methods in order to custom-tailor a problem-solving
method for the task area at hand. In Figure 5, this subsystem has been further decomposed. As would be expected in
any library, the index system is the central component. The index provides the means for organizing the search and
selection of mechanisms. Depending on the mode (configuration or assembly) that the user selects, the index system
presents either a configuration palette or a graphical assembly editor, respectively, to the knowledge engineer. The
palette and the editor allow the necessary tailoring of candidate methods to produce the final problem-solving method.
Note that the resulting method is, at this point, still domain-independent. The knowledge engineer will specialize this
method for the particular domain during the phase of knowledge-editor generation.

Figure 5. The library of mechanisms. Knowledge engineers search for candidate methods
using the index system, which provides multiple search strategies. Candidate methods can be
configured or assembled to obtain a final method that fits the task at hand. Typically, the
process will require several iterations among the index system, the configuration palette, and
the graphical assembly editor.

The underlying philosophy in the implementation of the index system is to give power to the knowledge engineer. We
are not ready to remove the knowledge engineer from the cycle of expert-system construction. Instead, we want to
present information to this user in a way that takes maximum advantage of the engineer’s skills for selecting a suitable
problem-solving method. This job can be equated with a student’s preparation of a report on a given subject. The
student may employ book-library facilities to find an already-written report on the subject, and may change, or
supplement, some sections in that report using additional sources (giving proper credit, of course!). This action is the
equivalent of method configuration. The student could also construct a new report by combining material from several
sources in a process similar to method assembly. The library of mechanisms in PROTÉGÉ-II assumes that the
knowledge engineer has the ability to judge the applicability and compatibility of methods and mechanisms, and has
the skills to construct a problem-solving method using the available building blocks. In the same way that a library
cannot prepare a report for a student, PROTÉGÉ-II will not, at the touch of a button, prepare a solution for the
knowledge engineer’s problem.

Indexing of mechanisms in PROTÉGÉ-II is based on the components of each mechanism and on its target tasks. There
are three indexing strategies that we have identified as useful: by task, by global data model, and by I/O declaration.

constructed
problem-
solving
method

configuration
palette

graphical
assembly

editor

index
system

candidate
method

knowledge
engineer

method configuration method assembly



The strategies complement one another, and use of one for a portion of the method configuration or assembly process
does not preclude use of any other as a supplement.

3.2.1. Indexing by Task

Each mechanism, or method, is associated in the library with a set of tasks, or with a set of composite tasks,
respectively. There are two ways in which this association can take place. First, when the mechanism is initially
incorporated into the library, tasks can be specified to be associated with the mechanism. Second, during the normal
use of the library, the knowledge engineer can establish that a mechanism is applicable for a task, and this information
can be added to the library. When a search by task is conducted and a given task is selected, the index system lists all
the mechanisms and methods associated with the task. Notice that this indexing scheme does not define a hierarchy of
tasks.

Browsing through a list of tasks in the library of mechanisms has implicit limitations. One shortcoming is that the task’s
name as given by PROTÉGÉ-II, or the textual description for that name, may not exactly match the name and
description that the PROTÉGÉ-II user is trying to find. In PROTÉGÉ-II, perfect matching is neither sought nor
assumed likely. Instead, the general notion of custom-tailoring is applied, and the user is expected to navigate the
process of constructing the problem-solving method. Consequently, the multiple-indexing capabilities of the library
are of importance to facilitate the construction operation.

3.2.2. Indexing by Global Data Model

A mechanism specifies the type of data structures that it can accept through its data model. The model is global in the
sense that it provides the base types with which PROTÉGÉ-II users can define concepts in the task’s domain and build
a task model from which a knowledge editor can be generated. The data model imposes limitations on the applicability
of a given mechanism; thus, the data model can be used as part of the search criteria.

The index system can display a list of known global data models, and, on selection of one of these, can display the
mechanisms and methods that use the data model. As with task indexing, no hierarchy of data models is constructed.

3.2.3. Indexing by Input–Output Declaration

The inputs and outputs that a mechanism requires also constitute a limiting factor in mechanism applicability. A
mechanism, even though it may belong to a particular task’s source, may not be able to complete that task in a given
instance because all the inputs that it needs are not available. Furthermore, its outputs may not be as complete as
desired, or may be insufficient to be assembled with another mechanism. The listing of inputs or outputs in browsers
by the index system is similar to that of the other indexing strategies.

This strategy, when combined with the other two, affords the knowledge engineer multiple possibilities to search for
candidate mechanisms and methods. This ability is important because we cannot determine a priori which indexing
scheme constitutes the best limiting factor in a mechanism search. If, after employing the index system, the choice is
a method, the user can configure, or assemble, this method using a configuration palette and an assembly editor.

3.2.4. The Palette and the Editor

The configuration palette and the graphical assembly editor are the tools that the knowledge engineer applies to
construct a final problem-solving method that is custom-tailored for the given task. The graphical assembly editor
allows the user to manipulate directly graphical objects to assemble new methods. It is more flexible than the palette,
which simply permits the substitution of one of the method components for another. There is no restriction on using
both tools simultaneously to, for example, configure a method by assembling a new method to fit as one of the
configured method’s components.

Our description of these subsystems is included with the discussion on the library of mechanisms because these
functions are relevant in this context. The actual display and management of the subsystems’ interfaces is conducted
by the UIMS. This major subsystem is described in Sections 3.3 and 3.4.

3.3. The User-Interface Management System

Once a problem-solving method has been tailored, the knowledge engineer has to model the task area under the terms
dictated by the method. Based on the task model, PROTÉGÉ-II then generates a knowledge editor whereby the



application expert can enter knowledge into the knowledge base. Both task modeling and knowledge editing are highly
interactive processes in PROTÉGÉ-II. The interactive nature of the system places great demands in the definition and
specification of the interfaces used by the knowledge engineer and by the application expert. This circumstance,
coupled with the stated requirement of providing flexible interaction styles and the fact that the knowledge-editor
interfaces must be generated automatically, creates a complex environment for interface specification. So that we can
control this environment, we are developing a UIMS that permits a straightforward selection of interaction styles for
different types of knowledge, and that directs the generation and display of these interfaces. Using the functionality of
the UIMS, a knowledge engineer can adapt an interface to the characteristics of a task, a domain, and a method.

Interactions between PROTÉGÉ-II and knowledge-editor users take place through the use of forms or through the
manipulation of graphical objects in an editor (Figure 6). The forms and graphical-objects compilers take
programmatic textual descriptions written in a formal language, and produce specialized interfaces that guide the
knowledge-acquisition routine by enforcing the domain-specific constraints specified through this formal language.
The output of the forms compiler is a hierarchy of forms; the output of the graphical-objects compiler is an editor
palette composed of graphical objects that can be combined in the editor according to a given editing paradigm (e.g.,
nodes-and-links, jigsaw puzzle). The current implementation of PROTÉGÉ-II supports only nodes-and-links graphs.

Figure 6. The user-interface management system. Programmatic descriptions of the task
modeler and knowledge editor are processed by compilers that generate the necessary
interfaces. A structure manager coordinates the display of all interface components using
information stored in a common database.

Associated by design with each problem-solving method are programmatic descriptions of forms and of graphical
objects that determine how the knowledge engineer can model the current task according to the chosen method, and
how the domain-specific terms in the task can be defined. The association is made at method-entry time in the library
of mechanisms, and the textual descriptions are a necessary part of each method’s definition. Links between graphical
objects and forms are maintained through the structure manager of the UIMS. This subsystem coordinates the
interdependencies among forms and graphical objects, and manages the display of all structures according to these
dependencies during task-modeling and knowledge-editing sessions.

constructed
problem-
solving
method

knowledge
engineer

application
expert

forms
compiler

graphical-
objects

compiler

Structure
Manager

task
modeler

knowledge
editor

programmatic
description

of knowledge
editor

programmatic
description

of task modeler

knowledge
engineer

database



To generate a new knowledge editor, the knowledge engineer makes use of the structures (forms and graphical objects)
associated with the problem-solving method to enter the domain-specific terminology needed to model the task. These
structures are presented to the knowledge engineer in the task modeler (see Figure 6). After building a model of the
task, the knowledge engineer selects interaction styles for the various types of knowledge (e.g., nodes-and-links graphs
for procedural knowledge) and PROTÉGÉ-II generates a preliminary knowledge editor based on those selections.
Since this knowledge editor has been generated from a problem-solving method that is domain-independent, the
knowledge editor is not yet adapted to the needs and requirements of the user (the domain expert), or to the particular
task and domain. The adaptation of the knowledge editor is accomplished by the knowledge engineer who customizing
the visual appearance of the graphical objects, and who specifies constraints, using formal languages, that will guide
the knowledge-acquisition process. Finally, the knowledge engineer employs the facilities of the structure manager to
stipulate the display relationships among forms and graphical objects. Using the structure manager, the knowledge
engineer ultimately specifies how the inputs required by the problem-solving method relate to the knowledge entered
in the knowledge editor. The editors generated by PROTÉGÉ-II are similar to that of OPAL [Musen et al., 1987]. There
is an implicit assumption that the use of formal languages to generate interfaces provides enough flexibility to
accommodate the varying requirements of the methods in the library. In Sections 3.3.1 through 3.3.2 we take a closer
look at what is involved in the knowledge engineer’s job of editing programmatic descriptions for the forms and
graphical-objects compilers, and at how these descriptions shape the generation of the knowledge editors. The features
described in these sections are exemplified in Section 4, where the use of PROTÉGÉ-II is demonstrated.

3.3.1. The Forms Compiler

The form-based interfaces used by the application expert, and those associated with problem-solving methods, are
defined in a programming language, called FormIKA [Bennett, 1990], which was developed specifically for
PROTÉGÉ-II. A program in this language has three goals:

1. Definition of variable-sized forms with multiple columns, value-entry fields, and value-selecting buttons

2. Definition of relationships among forms by creation of a hierarchy of forms in the interface

3. Definition of relationships among entries in the forms constituting a constraint system for the interface

An important part of the FormIKA language is the constraint-specification constructs. Whereas many user interfaces
maintain relationships among interface objects by applying procedural attachments, FormIKA defines such
relationships declaratively. Thus, knowledge engineers can use this language to declare domain-specific constraints
that apply to particular pieces of knowledge that are acquired through the hierarchy of forms. In this manner, the
constraints are used to guide the knowledge-acquisition session with the application expert and to adapt the
knowledge-acquisition tool to the particular task, domain, and user. The same language is used by PROTÉGÉ-II to
generate forms for the preliminary knowledge editor. These preliminary forms will have some constraints already
specified that are generated from the model of the task constructed in the task modeler.

Constraints in FormIKA can be visual or nonvisual. Visual constraints deal with the appearance of entry blanks in the
forms. Based on the value entered by the application expert in a particular entry blank, the constraint system can make
other entry blanks accessible (visible), or inaccessible (nonvisible), thus directing the attention of the expert to the
appropriate blanks. Nonvisual constraints work in a similar way, but affect instead the values displayed on the blanks
themselves. Also, the constraint system can update or determine values in some entry blanks by applying defined
constraints that relate to other entry blanks whose values have been entered already. In this manner, the consistency of
the acquired knowledge is maintained.

3.3.2. The Graphical-objects Compiler

Both task modeling and knowledge editing can take place in graphical editors through manipulation of graphical
objects (e.g., drawing a flowchart). These objects and their behavior can be specified through a formal language called
Palette Constraint Language (PCL). Programs in this language have the following purposes:

1. Definition of a number of graphical objects that constitute a palette for a graphical editor

2. Definition of internal constraints that determine the behavior of the objects on the screen

3. Definition of external constraints that determine the connectivity of the graphical objects when these are used
in a graphical editor



Again, the purpose of this language is to permit the definition of the constraints in a declarative fashion. The constraints
have the effect of adding domain-specific behavior to otherwise general graphical editing structures, thus steering the
interaction with the application expert. 

Internal constraints limit the editing functions applicable to particular objects. For example, some objects can be
declared as modifiable, giving the knowledge-editor user the ability to define subtypes of that particular object that
inherit the parent’s behavior. This feature is useful in instances where the task model defined by the PROTÉGÉ-II user
is incomplete or is not sufficiently specialized, requiring the expert to define new terms derived from the more general
task model.

External constraints put restrictions on the ability to connect one object to another. This type of constraints also is
domain-dependent, and, together with the internal constraints, defines a behavior for the knowledge editor that will be
generated. As noted before, PROTÉGÉ-II currently generates editors with a nodes-and-links editing paradigm. We are
generalizing the grammars of FormIKA and PCL to form a single language that can support multiple views (forms,
graphs) and multiple editing paradigms.

3.3.3. The structure manager

The on-screen display and handling of forms and graphical objects is accomplished with the structure manager. This
subsystem can be used to bring up a specific interface structure, such as a form or a graphical object, or to associate
one structure with another. The PROTÉGÉ-II user can relate the display of a particular form dynamically by
double-clicking on an individual graphical object. The user can also associate an entry blank in a form with an object,
or the label of a graphical object with a form. The structure manager also serves the vital role of linking the library of
mechanisms with the task modeler and the knowledge editor. The special implications of this link are detailed in
Section 3.4.

3.4. Communication Among Subsystems

Up to this point, we have described the library of mechanisms and the UIMS as two completely separate entities. The
generation of a knowledge editor has been represented as a step-by-step process that moves from one subsystem to the
next in an orderly manner. It is also possible, however, to access the library of mechanisms in PROTÉGÉ-II during the
phases of task-modeling and knowledge-editor generation.

This link enables the knowledge engineer to define at the knowledge level the roles played by domain-specific control
knowledge. For example, in the domain of hypertension, the structure manager can make the necessary links so that a
drug dosage can be calculated using a specific mechanism (or set of mechanisms) from the library. Relationships
between graphical objects and the library can be prescribed in similar fashion.

By means of this functionality, the PROTÉGÉ-II user can ultimately connect particular inputs of a method to forms,
entry blanks, or graphical objects in the knowledge editor or in the task modeler. The definition of the roles of pieces
of knowledge at the knowledge level was not always possible with the previous implementation of PROTÉGÉ [Musen
and Tu, 1991]. In that system, many of these roles had to be defined at the symbol level by the knowledge engineer
either as production rules or as procedures. By not presupposing a predefined problem-solving method, and by
providing a library of mechanisms with which knowledge engineers can craft new problem-solving methods,
PROTÉGÉ-II permits a complete definition of all knowledge roles through the tool itself.

4. A Running Example

Now that we are familiar with the different pieces that make up the PROTÉGÉ-II system, we shall illustrate the
systems’s use through an example of the generation of a knowledge editor. Because PROTÉGÉ-II is not fully
implemented, not all the functionality outlined in the previous sections will be demonstrated in this example.

The knowledge engineer’s goal in our example will be to produce a knowledge editor for a knowledge base that will
be employed by an advice system that assists physicians managing cancer therapy. The task area is that of clinical-trial
management in which patients are assigned at random to one of several alternative treatment plans. The details of a
treatment plan are specified by physicians through what is called a protocol. Knowledge acquisition in this context
consists of obtaining the description of protocols, which includes knowledge about the components of the protocols,
the relationships among the components, and the procedural knowledge necessary to carry out the treatment plan.



Figure 7. Interaction with the index system. The goal of the knowledge engineer is to find
candidate methods or mechanisms that can be configured or assembled into a problem-solving
method for the selected task.

4.1. Construction of the Problem-Solving Method

In the initial phase in the construction of the knowledge editor, the knowledge engineer uses the facilities of the library
of mechanisms to look up candidate mechanisms, or methods, to solve the class of tasks at hand. Figure 7 shows the
index system. The user has selected the index-by-task search strategy, and has found a suitable entry by browsing
through a list of tasks. Selecting a task in this list displays both a textual description of the task, and the task’s source
in a separate browser. Similarly, the selection of an entry in the second browser shows textually the characteristics of
that entry.

The descriptions of tasks and mechanisms appearing under the browsers aid the knowledge engineering in judging the
appropriateness of the task and the applicability of the mechanism. In Figure 7, the user believes that protocol-based
execution planning is a good match, and is investigating the applicability of the three known members of that task’s
source. In the domain of interest, it is necessary to manipulate temporal data (e.g., laboratory-test results, patient
symptoms); thus, it is important that the mechanism selected support this type of data in its global data model. In this
case, episodic skeletal-plan refinement is the only candidate method that fits this requirement (this information can be
found in the textual descriptions). Additional details about a global data model can be extracted in the index system
using the index-by-data-model search strategy.

Episodic skeletal-plan refinement is a method, as can be seen from the task decomposition associated with it. The user
can now choose whether to configure this method in the configuration palette, or to call the assembly editor to modify
the method’s assembly. Figure 8 shows the configuration palette for our example. Each of the subtasks in the task
decomposition is related to a multiple-selection button. The choices on the buttons are the mechanisms known to be in
the subtask’s source. The user can access information about these mechanisms in the index system by selecting the



corresponding subtask. Substituting one mechanism for another is as simple as clicking on the proper button. However,
the user also is given the option of replacing a mechanism on the palette by one not present in the buttons.

For comparison, Figure 8 also depicts the same method in the assembly editor. Notice that the assembly editor is much
more flexible because, by deleting or adding mechanisms, the user can define a different task decomposition. In
addition, the editor allows the user to modify the control configuration of the method dictated by the connecting links
between mechanisms. The PROTÉGÉ-II user would normally move back and forth among the palette, the editor, and
the index system to construct the problem-solving method. If, by using the building blocks in the library of
mechanisms, the user can custom-tailor a new method, this method will be saved and incorporated into the library for
future use.

Figure 8. The configuration palette and the graphical assembly editor. The knowledge engineer
can use the palette to select one of the available mechanisms for each of the subtasks in the
method’s task decomposition. Selecting a different mechanism using the index system, or
assembling one with the assembly editor, is also possible. Notice that the assembly editor
permits editing of the links between mechanisms, thus offering a level of flexibility much
higher than that of the configuration palette.

4.2. Modeling of the Task

The problem-solving method of skeletal-plan refinement starts with the creation of an abstract (skeletal) solution to a
problem. The abstract plan is decomposed into one or more constituent plans that are developed in more detail than is
present in the original abstract plan. The constituent plans may, in turn, need to be decomposed further in a similar
fashion. The process continues until a complete, specific plan for the given problem is defined. Episodic skeletal-plan
refinement is a version of this problem-solving method that can operate with time-dependent data such as those in our
running example.

The problem-solving method that is constructed using the library of mechanisms dictates the terms in which the task
can be modeled. In our example, the task can be modeled in terms of planning entities, input data, and actions, as
determined by the model of episodic skeletal-plan refinement [Musen and Tu, 1991]. Planning entities are time-varying
problem-solution components that can be decomposed into other planning entities, thus forming a hierarchy. Input data
are gathered from the environment affected by the problem. Actions are procedures that can modify instances of active
planning entities. For example, in our domain of interest, the knowledge engineer can define protocols as planning
entities, and can decompose such entities into other planning entities, such as chemotherapies1 and radiation therapies.



A laboratory-test result will be part of the input data, whereas drug attenuation can be an action that affects
chemotherapy planning entities.

In addition, planning entities and actions can have attributes. The role of an attribute is to attach a value to a particular
characteristic of a planning entity, or action, needed for problem solving. For example, in episodic skeletal-plan
refinement, all planning entities have an attribute called duration that determines when each entity is active in the plan.
This attribute gives planing entities their temporal nature.

As explained in Section 3.3, problem-solving methods in the library of mechanisms are associated with programmatic
descriptions of forms and graphical objects. The UIMS processes these descriptions to display an interface for the
knowledge engineer where the task-modeling interaction can take place. In Figure 9, we can see part of the interface
for episodic skeletal-plan refinement. The form shown and others in the form hierarchy permit the knowledge engineer
to define the domain-specific concepts for the given task as allowed by the problem-solving method. It is in this manner
that construction of a method influences the task-modeling phase.

Figure 9. The interface for the task modeler. Each method is associated by design with an
interface for modeling tasks in the terms prescribed by such method. The interfaces are
specified using formal languages. This example shows forms to define planning entities, and
attributes, for episodic skeletal-plan refinement, along with the FormIKA programmatic
description of the forms.

1. Chemotherapies are groups of drugs administered to cancer patients in a particular order and in specific dosages.



One of the advantages of providing a UIMS is the resulting freedom in how the method requirements for task-modeling
are enforced on the user. In this case, the knowledge engineer is presented with a number of forms where planning
entities, attributes, actions, and input data can be defined. By associating the proper programmatic description of
graphical objects with the problem-solving method, however, the user can construct the planning entity hierarchy in a
graphical editor (e.g., as a tree). In fact, forms and graphical interfaces can both be associated with a given method and
the user can make his own choice as to the interaction style to be employed.

Figure 10. The graph-based portion of a knowledge editor to enter protocols. Application
experts use a palette of graphical objects to construct flowcharts of their protocols. This
example shows the palette, and a partial specification of a protocol, along with the associated
PCL programmatic description of the palette objects. Because the knowledge engineer is
allowed to stipulate the interaction style, the resulting palettes in PROTÉGÉ-II can be highly
expressive, and closely related to the domain of interest.

4.3. Generation of the Knowledge Editor

The phase of knowledge-editor generation requires a specification of the interface between the application expert and
the knowledge-acquisition system. Therefore, the knowledge engineer must define the contents of the interface, the
presentation style of these contents, and the behavior of the generated interface components. Normally,
knowledge-editor generation will comprise the following steps:

1. Determine the types of knowledge to be acquired

2. Decide the most appropriate style of presentation for each type of knowledge (form-based or graph-based)

3. Generate automatically a preliminary knowledge editor.



4. Write programmatic descriptions of the forms and graphical objects to be used, which constrains the behavior
of the interface components

5. Define the connections between graphical objects and forms

In our continuing example, the knowledge about a protocol that will be acquired can be procedural or factual. The
protocol is, by definition, a procedure. Clearly, however, many details about the protocol—such as types of drugs, and
dosages of drugs—are factual. Since physicians typically draw flowcharts to provide high-level descriptions of
protocols [Musen et al., 1987], it is appropriate to acquire this procedural knowledge graphically while obtaining facts
about the protocol through the use of forms.

Figure 11. The form-based portion of a knowledge editor to enter protocols. This interaction
style is preferred for certain types of knowledge, such as protocol data. The forms shown in
this figure are part of a hierarchy of forms constructed by the knowledge engineer. The
hierarchy controls the order in which the forms can be displayed, and thus guides the
application expert through the knowledge-acquisition process.

Once the knowledge engineer makes a decision regarding presentation styles, a preliminary editor is generated by
PROTÉGÉ-II from the task model developed and the presentation styles selected. This editor consists of a palette, or
palettes, of graphical objects that can be utilized to draw diagrams in a graphical editor, and of a hierarchy of forms.
The knowledge engineer then uses the forms and graphical-objects languages to impose domain-dependent constraints
on the behavior of the interface components, thus adapting the editor to the requirements of the user, the task, and the
domain. The PCL language, which constrains the behavior of the palette objects, predefines a number of types of
graphical objects (e.g., iteration box, decision box) from which all other objects in the palette are derived. The
predefined types provide a general framework to define graphical objects to capture procedural knowledge.

Figure 10 shows the palette for our example, as well as a partial protocol drawn using the objects in the palette. It also
shows part of the PCL description for the palette. Notice that the declaration for the object chemo (for chemotherapy)
has a constraint no-connect-to that determines that this object cannot be connected to itself. The graphical-objects
compiler takes the PCL code and generates a knowledge-editor interface that automatically enforces the constraints
specified in the PCL description. The compiler, however, does not prescribe a visual representation for the graphical
objects that appear in the palette, although a default (not adapted) representation (where every object is a box



distinguishable by only its label) is available. In Figure 10, notice how the knowledge engineer makes use of this
freedom to produce highly expressive palette objects that can aid the capture of knowledge from the application expert.

The protocol of Figure10 contains several examples of additional subtyping of graphical objects made by the
application expert. For example, a subtype of the object chemo called VAM was defined. Subtyping of an object in the
graphical editor is allowed unless a no-modify constraint is declared for the object.

The application expert enters certain facts about the protocols using forms. These forms are defined by the knowledge
engineer, using the FormIKA language, as part of the process of knowledge-editor generation. Figure 11 shows some
of the forms associated with the protocol in Figure 10 (Protocol 2091). Using FormIKA, the knowledge engineer
defines a proper hierarchy of forms that guides the application expert during knowledge acquisition. Also, since
automatic updating of entry fields can be defined through the language (e.g., the name of the protocol appears in the
subforms automatically), the knowledge engineer can simplify the expert’s work by designing forms such that there is
no need to repeat entries.

The link between the protocol graph and the protocol form is maintained by the structure manager. This subsystem
accesses a database that contains information on all interface structures and their directional links. Interface structures
are added to the database from the FormIKA and PCL declaration of the structures. Links are added by the knowledge
engineer. The structure manager has access as well to information about the constructed problem-solving method and
its associated forms and graphical objects. The method itself is viewed by the structure manager as a graphical object
that has inputs and outputs. Thus, to establish that a protocol is an input to episodic skeletal-plan refinement, the
knowledge engineer requires no more than establishment of a link between that planning entity and the appropriate
method input.

5. Discussion

For the past several years, researchers have been studying the use of models of problem-solving methods to construct
knowledge-acquisition tools [McDermott, 1988; Musen, 1989a]. The resulting applications, although successful to
some extent, have revealed serious limitations with this approach. The domain-independent nature of the models makes
it difficult to express the role of knowledge that depends on domain-specific considerations. In addition, the resulting
knowledge-acquisition tools are restricted to the class of tasks that the model can represent.

Whereas scientists have quickly recognized this problem, considerably less attention has been given to the human–
computer interaction issues associated with the specification of interfaces for knowledge-acquisition tools built from
models of problem-solving methods. A major difficulty in this area is the inability of interfaces derived from
domain-independent models to express and capture knowledge that is task- and domain-specific, or to show any
adaptability to the needs and requirements of the domain experts who use these tools.ðð These limitations are crucial
because regardless of the appropriateness of a given model, a tool derived from such model is not useful if its interface
is not suitable for communication with the user.

There is a clear paradox in the desire to build knowledge-acquisition tools that are based on domain-independent
models but that simultaneously present interfaces that are task-, domain-, and user-dependent. Our approach to this
challenge is two-pronged. On one hand, we are investigating the use of building blocks, called mechanisms, that can
be used to construct problem-solving methods. By using mechanisms, we hope to eliminate the limitation of
single-method architectures and to be able to define both domain-independent and domain-dependent knowledge roles.
On the other hand, we are developing a user-interface management system that would allow us to adapt interfaces
derived from the constructed problem-solving methods to the requirements of individual tasks, domains, and users.
This capability is crucial in PROTÉGÉ-II, which is a metatool where interfaces for the resulting knowledge-acquisition
tools are generated in great part automatically.

On the first front, our current endeavor is to identify mechanisms from expert systems previously developed in our
laboratory [Tu et al., 1989; Musen, 1989a]. We are building the library of mechanisms as an effective architecture to
index the identified mechanisms based on their components (see Section 3.2). The design of the library of mechanisms
is similar to that of a library for books. The knowledge engineer can use multiple search strategies to find candidate
mechanisms that can be further configured, or assembled, into a problem-solving method. Through the use of
PROTÉGÉ-II, we expect to gain a better understanding of the indexing strategies that are most useful for knowledge
engineers. Separately, we are studying the control problems that arise in the assembly and configuration of mechanisms
and the graphical means to provide for the construction of problem-solving methods. The graphical assembly editor,



which is part of the library of mechanisms, will allow us to experiment with the data flow and control flow among
mechanisms. We will investigate the extent to which the mechanisms in the library can be combined effectively in such
an editor to form new problem-solving methods.

On the second front, we are examining means to generate adaptable interfaces in PROTÉGÉ-II, and are studying the
effect of the adaptability requirement on the definition of mechanisms. One of our first results was the identification of
an interface specification as a necessary component of a mechanism. In PROTÉGÉ-II, each mechanism defines what
interface specifications can be used to model a task under the terms of such mechanism (see Section 4.2). In addition,
the knowledge editors generated by PROTÉGÉ-II from the task model are considered preliminary. The user-interface
management system provides the knowledge engineer with the means to adapt these preliminary editors to individual
tasks, domains, and users. In this manner, we bridge the gap between an editor derived from a domain-independent
model and an editor tailored to the requirements of a single task, domain, and user. Although the current version of
PROTÉGÉ-II supports only form- and graph-based interaction modes, we are merging FormIKA and PCL—our
formal languages for interface specification—into a single, more general, language that will support additional
modalities and drawing techniques (e.g., jigsaw puzzle). We hope not only to gain additional flexibility in the
generation of interfaces, but also to study approaches for mechanism assembly different from the nodes-and-links
paradigm.

PROTÉGÉ-II’s view of mechanisms as reusable programming constructs parallels, in certain aspects, that of Spark
[Klinker et al., 1991]. Perhaps a clear contrast between these two systems lies not in the particular techniques used in
the manipulation of mechanisms, but rather in the different approaches to the interaction between the user and the
system. Whereas PROTÉGÉ-II aides a knowledge engineer in the construction of knowledge-acquisition tools, Spark
guides a nonprogrammer through the process of selecting an assemby of mechanisms. PROTÉGÉ-II has the relative
advantage of presenting information to a knowledgeable user who can make informed decisions. Spark, in contrast,
relies heavily on the system to make critical choices.

One system that recognizes the central importance of domain-specific interfaces for knowledge-acquisition tools is
DOTS [Eriksson, 1990]. In DOTS, knowledge engineers can construct interfaces for knowledge-acquisition tools by
specifying a window-system layer on top of the Interlisp-D system. The process, however, is mostly manual. The intent
of the user-interface management system in PROTÉGÉ-II is to relieve the knowledge engineer from having to specify
in its entirety the interface for each knowledge-acquisition tool developed. The preliminary knowledge editor produced
from the task model is fully usable and the adaptation of this preliminary editor is greatly facilitated by the existence
of formal languages that allow the stipulation of constraints in a declarative fashion.

Our emphasis on the composition and features of the interfaces presented by PROTÉGÉ-II derives from our previous
experience with PROTÉGÉ. In knowledge-acquisition tools, the nature of the interface—where knowledge is
presented to and elicited from users—may be as important as the means used to model the class of tasks at hand. The
adaptability of this communication channel to individual tasks, domains, and users has not been given sufficient
attention in the research community and is one of the key aspects of PROTÉGÉ-II that we are studying. The challenge
remains, for us as well as for other groups, to develop knowledge-level architectures that can generate
knowledge-acquisition tools that do not overlook the vital link to the source of knowledge: the interface to the
application expert.

Acknowledgments

This work has been supported in part by grant LM05157 from the National Library of Medicine, by grant HS06330
from the Agency for Health Care Policy and Research, by a grant from the Institute for Biological and Clinical
Investigation at Stanford University, and by a gift from Digital Equipment Corporation. Computer support was
provided in part by grant RR05353 from the Biomedical Research Support Grant Program of the National Institutes of
Health, and by the SUMEX-AIM resource, supported by grant LM05208 from the National Library of Medicine.

We thank John Dawes, Josef Schreiner, Yuval Shahar, and James Winkles for their insightful comments, Andrew
Bennett for his work in developing FormIKA, and Lyn Dupré for her extensive editing of a previous draft of this paper.

References

Bennett, J. S. 1985. ROGET: A knowledge-based system for acquiring the conceptual structure of a diagnostic expert
system. Journal of Automated Reasoning 1:49–74.



Bennett, A. 1990. A form-based user interface management system for knowledge acquisition. Master’s Thesis.
KSL-Report 90-43, Knowledge Systems Laboratory, Stanford University, Stanford, CA.

Chandrasekaran, B. 1986. Generic tasks for knowledge-based reasoning: High-level building blocks for expert system
design. IEEE Expert 1:23–30.

Clancey, W. J. 1985. Heuristic classification. Artificial Intelligence 27:289–350.

Eriksson, H. 1990. Meta-tool support for customized domain-oriented knowledge acquisition. In Proceedings of the
Fifth Banff Knowledge-Acquisition for Knowledge-Based Systems Workshop, Boose, J. H. and Gaines, B. R.,
editors., pp. 6.1–6.20. Banff, Alberta, Canada.

Friedland, P. E., and Iwasaki, Y. 1985. The concept and implementation of skeletal plans. Journal of Automated
Reasoning 1:161–208.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., and McDermott, J. 1991.Usable and reusable programming
constructs. Knowledge Acquisition 3:117-135.

Marcus, S. and McDermott, J. 1989. SALT: A knowledge acquisition tool for propose-and-revise systems. Artificial
Intelligence 39:1–37.

McDermott, J. 1988. Preliminary steps toward a taxonomy of problem-solving methods. In Automating Knowledge
Acquisition for Expert Systems, ed. by Marcus S., pp. 225–256. Boston: Kluwer Academic.

Musen, M. A., Fagan, L. M., Combs, D. M., and Shortliffe, E. H. 1987. Use of a domain model to drive an interactive
knowledge-editing tool. International Journal of Man–Machine Studies 26:105–121.

Musen, M.A. 1989a. Automated Generation of Model-Based Knowledge-Acquisition Tools. London: Pitman.

Musen, M. A. 1989b. An editor for the conceptual models of interactive knowledge-acquisition tools. International
Journal of Man-Machine Studies 31:673–698.

Musen, M.A., and Tu, S.W. 1991. A model of skeletal-plan refinement to generate task-specific knowledge acquisition
tools. KSL-Report 91–05, Knowledge System Laboratory, Stanford University, Stanford, CA.

Newell, A. 1982. The knowledge level. Artificial Intelligence 18:87–127.

Puerta, A. 1990. L-CID: a blackboard framework to experiment with self-adaptation in intelligent interfaces. Ph.D.
Dissertation. Technical Report USCMI 90-esl-6, Center for Machine Intelligence, University of South
Carolina, Columbia, SC.

Rissland, E. 1984. Ingredients of intelligent interfaces. International Journal of Man–Machine Studies 21:377–388.

Steels, L. 1990. Components of expertise. AI Magazine 11(2):30–49. 

Tu, S., Shahar, Y., Dawes, J.,Winkles, J., Puerta, A., and Musen, M. 1991. A problem-solving model for episodic
skeletal-plan refinement. In Proceedings of the Sixth Knowledge-Acquisition for Knowledge-Based Systems
Workshop, ed. by Boose, J. H. and Gaines, B. R., Alberta, Canada, in press.

Vanwelkenhuysen, J., and Rademakers, P. 1990. Mapping a knowledge level analysis onto a computational framework.
Proceedings of the Tenth European Conference on Artificial Intelligence, pp. 661–664. Stockholm, Sweden.


