
The Study of Models of Intelligent Interfaces

Angel R. Puerta

Medical Computer Science Group
Knowledge Systems Laboratory

Stanford University
Stanford, CA, 94305-5479, USA

(415) 723-6979
puerta@camis.stanford.edu

ABSTRACT
Researchers in the field of intelligent interfaces have
concentrated on building architectures, and have placed
little emphasis on defining appropriate models. As a
result, this research area is not well defined. L-CID is a
model of an intelligent interface that establishes the
knowledge requirements for, determines the functionality
of, and creates a definition for an intelligent interface. In
addition to modeling knowledge-based user interaction,
L-CID allows two important functions commonly
overlooked in models of intelligent interfaces: (1) self-
adaptation, and (2) user-interface management. Examples
of implementations of L-CID for each of these functions
are presented.

KEYWORDS: Intelligent-interface modeling, self-
adaptation, user-interface management, machine learning.

A NEED FOR MODELS
Through the decade of the eighties, and the beginning of
the nineties, the areas of artificial intelligence and human–
computer interaction have caught the interest of the
scientific and business communities. This interest has
sparked, among other advancements, the development of
expert systems, of advanced graphical interfaces, and of
user-interface management systems. Yet, despite all the
progress, little has been accomplished in a natural
interdisciplinary field: the research and development of
intelligent interfaces. Certainly, any field that draws from
multiple disciplines is bound to multiply the complexities
of each discipline, thereby slowing its own advancement,
compared to that of the contributing individual areas, by
an order of magnitude. In the case of intelligent
interfaces, these complexities include problems such as
knowledge representation, proper architectures for
knowledge-based systems, and human factors.

Nevertheless, there is one important item that has
contributed to the slow rate of progress of intelligent
interfaces: Researchers have not emphasized studying
models of intelligent interfaces—a problem that is
independent of the multidisciplinary nature of the field.

The development of models of knowledge-based systems
is important because proper models establish the system
requirements and define the functionality that the system
can provide. Models are used extensively in artificial
intelligence and in human–computer interaction. For
example, the blackboard model [7] has served as a
foundation for the construction of numerous knowledge-
based systems, and even of expert-system shells [6].
Buchanan's classical model of a learning system [1] is as
valid today as it was when it was first proposed. Card's
model of human–computer interaction [2] has influenced
significantly the development of user interfaces for many
years. Furthermore, the features that most of these models
share are their simplicity and flexibility, allowing them to
be combined to create new models. For instance,
Buchanan's model of a learning system can be embodied
within the blackboard model.

Unquestionably, there have been attempts at defining the
functionality and knowledge requirements of intelligent
interfaces. Card's triple-agent model [3] offers a solid
base for the implementation of knowledge-based
interfaces. It also includes many of the knowledge
requirements that Rissland proposed in earlier work [14].
Both of these efforts, however, fail to accommodate
complex systems such as self-adaptive interfaces [5]. The
bulk of the research to date has been on architectures for
intelligent interfaces. Architectures are useful to study
specific implementation issues, but they are often
completely hardware dependent. It is difficult to apply the
results obtained with one architecture to the construction
of another architecture that, more often than not, uses a
different hardware platform and is intended for a different
task or domain.

In this paper, I introduce L-CID—a model of an intelligent
interface—and demonstrate its usefulness with examples
of its implementation. L-CID establishes the knowledge
requirements of an intelligent interface, defines the
functionality of such interfaces, and creates a definition of
an intelligent interface. L-CID draws from other models
of user interfaces and of knowledge-based systems,
augments these models, and corrects some of their
inadequacies in the context of intelligent interfaces. In
particular, L-CID avoids limiting itself to the definition of
knowledge requirements and functionality for the
intelligent interaction with users. Although clearly
essential, knowledge-based interaction is only one of three
major functions that an intelligent interface can perform.
The other two functions are self-adaptation and automatic
generation. In self-adaptation, the interface can improve
its performance over time by observing its actions,
localizing faults in its knowledge base, and modifying that
knowledge base accordingly. In automatic generation, the
interface uses its existing knowledge base to produce
(generate) an interface that is particular to the current state
of the knowledge base, thus acting as an intelligent user-
interface management system.

The rest of this paper is organized as follows. First, I
define the proposed model and explain how that model
was derived. Next, two examples of instantiations of the
L-CID model are presented: (1) an example of the use of
the model to build a self-adaptive system, and to test a
learning technique for modality selection; (2) an example
of automatic generation of interfaces that demonstrates
how knowledge-acquisition tools can be derived from task
and domain knowledge. To conclude, I argue the benefits
of the study of models by intelligent-interface researchers.

THE L-CID MODEL
Figure 1 depicts Card triple-agent model [3] of an
intelligent system. The three agents identified are the user,
the user-discourse machine, and the task machine. There
is a set of tasks that the user can perform with the
cooperation of the other two agents. In the performance of
a task, the task machine provides the problem-solving
knowledge, and the discourse machine conducts any
needed dialog with the user. All three agents are capable
of creating and maintaining models of the other agents and
of the tasks. An intelligent interface in this model,
although not represented explicitly, may be part of the task
machine and of the discourse machine at the same time.

Using this abstract model, we can identify three primary
functions for the intelligent interface: task modeling, user
modeling, and translation. Task modeling in an interface
maintains a satisfactory model of the tasks that captures all
the relevant functions and operations. User modeling
constructs a representation of the user's knowledge of the
tasks and the machines. Translation converts user
intentions into machine actions and, in the opposite
direction, machine actions into user identifiable responses.
Consequently, these functions define specific knowledge
requirements: knowledge of tasks and domains,
knowledge of users, and knowledge of interaction
modalities. There are, however, additional knowledge
requirements and functionality, not distinguished in the
triple-agent model, that must be represented in an
intelligent-interface model. First, knowledge of the
computer, including its available software tools and
hardware devices, is needed so that the interface can match
tools with users and devices to provide appropriate
interaction modes. Second, knowledge of the physical and
organizational environment in which the user and machine
perform tasks is important. Different types of users place

Figure 1. The triple-agent model. Agents—denoted by ovals—cooperate to perform tasks. Each of the agents
maintains models of the other agents and of the tasks to be performed.

Tasks User
User-

Discourse
Machine

Task
Machine

Models
of

Tasks

Models
of

Agents

Models
of

Agents

Models
of

Agents

Models
of

Tasks

Models
of

Tasks

different demands on an interface. Furthermore, such
demands can vary from environment to environment (e.g.,
from an office setting to a home setting). Third, the
interface must be able to assist the user in performing
tasks. Thus, knowledge of when and how to assist, and of
how to recognize user intentions and plans, should be
disponible.

The knowledge requirements established up to this point
address directly the human–computer interaction process.
They do not, however, cover an important function that is
achievable with a knowledge-based system: self-
adaptation. Figure 2 describes self-adaptation from a
control perspective [8]. It follows from this figure that, if
we denote an intelligent interface as process P1, then a
process P2, with appropriate feedback from P1, could
improve the performance of P1 over time. The
combination of P2 and P1 defines a self-adaptive interface.
Knowledge requirements for a self-adaptive intelligent
interface are similar to those of a machine-learning
system. First, training knowledge is needed to select
training instances (in this case, instances of interaction
with users), or to generate training instances. Therefore,
training knowledge is what defines the learning strategy
that the interface follows. Second, evaluation knowledge
is required to identify faults in the interface's knowledge
base, and to recommend changes to that knowledge base.
Finally, implementation knowledge is necessary to
translate recommended changes into specific
modifications to the interface's knowledge base.

The L-CID model—shown in Figure 3—incorporates the
requirements discussed here for a self-adaptive intelligent
interface. L-CID is defined within the paradigm of the
blackboard model [7] for two main reasons: (1) to

represent knowledge requirements explicitly as knowledge
sources, and (2) to separate clearly as a metaprocess the
self-adaptive functionality of the interface by using the
multiple-layer capabilities of blackboards. Note that
L-CID does not establish necessary conditions for an
interface to be qualified as intelligent. Instead, interfaces
can be categorized discretely with this model according to
how many of the knowledge requirements they fulfill.
With L-CID, interfaces can be thought of as exhibiting
degrees of intelligence, as opposed to other classifications
that may allow only two categories: intelligent and dumb.

A SELF-ADAPTIVE INSTANTIATION OF L-CID
Programming-by-example interfaces, a kind of
demonstrational interfaces, are intelligent systems that can
infer the user’s next action by reasoning about the user’s
previous actions [4, 9]. Thus, these interfaces can be
described as learning-by-example systems that recognize
patterns in a sequence of interactions, generalize from
these patterns, and establish the next logical step, or
sequence of steps, that the user is expected to follow.
Their success has been mixed because the learning
techniques employed are effective for certain tasks but not
for others. This problem is a consequence of presupposing
that learning by examples is the most appropriate strategy
to learn automatically about user intentions.

It would be advantageous to determine what learning
techniques are most effective for given tasks before
committing to a full implementation of the intelligent
interface. L-CID can be used to build a rapid-prototyping
system that allows developers to test learning techniques
and to localize deficiencies in the techniques by simulating
the interaction process for the task of interest. A full
description of this implementation of L-CID has been

Figure 2. Three types of feedback systems. The system in (a) is nonadaptive because the process does not receive
any feedback from the domain. That in (b) is adaptive; P1 can change how it operates on D. That in (c) is self-
adaptive. P2 can modify how P1 operates on D.

P1

D

P2

DD

P1P1

Domain

Process

(a) (b) (c)

reported elsewhere [11, 12] and is beyond the scope of this
paper. Its principles, however, are described here to
illustrate how the application of a general model can yield
significant benefits to intelligent-interface developers.

Figure 4 shows an abstract view of a blackboard
implementation of L-CID that tests a learning technique
for modality selection. The knowledge sources—as
defined in the blackboard paradigm—for the task, user,
computer, and environment models contain facts about the
features of each of these elements. The goal of the
learning technique is to determine what interaction mode
is indicated for each valid combination of feature values

for the four models. The mapping of combinations to
modes is stored in a separate knowledge source, called
map of modes, that, in the abstract L-CID model, is
included in the discourse manager knowledge source. The
learning layer of the implementation contains the correct
mapping information to simulate acceptance and rejection
by the user of the choice of modes made by the interface.
Based on whether a choice is accepted or rejected, the
learning layer changes the map-of-modes knowledge
source in the interface layer. Using this simulation,
interface developers can run different tests to establish
how sensitive the learning technique is to changes in the
feature values, to establish learning curves for the

Figure 3. The L-CID model of a self-adaptive intelligent interface. The knowledge requirements are represented
explicitly as knowledge sources in a blackboard model. The model is multilayer, with the performance element of the
learning layer being the lower, interface layer.

Evaluation
Expert

Blackboard

Training
Expert

Implementation
Expert

Performance
Element

Tizona -- The Learning Layer

Modeling Expert

User
Model

Computer
Model

Environment
Model

Computer

Blackboard

Blackboard

Environment

User

Discourse Manager

Modality
Selector

Multichannel
Parser

Blackboard

Intelligent Assistance

Help
Expert

Plan
Recognizer

Blackboard

Task and Domain Advisor

Domain
Expert

Task
Expert

Blackboard

Babieca -- The Interface layer

technique, and to identify the limits of the technique with
respect to the maximum number of feature combinations
whose mappings can be effectively learned. Developers
can then use the test results to modify the technique in
order to eliminate its weak areas [11].

By applying a model such as L-CID, we can study what
are the strengths and weaknesses of programming-by-
example interfaces, what are the tasks for which these
interfaces are most useful, and what are the learning
strategies that are most appropriate to infer user’s actions
for tasks that are outside the scope of this type of
intelligent interfaces.

USER-INTERFACE MANAGEMENT WITH L-CID
One function that researchers commonly overlook when
discussing intelligent interfaces is the automatic
generation of interfaces from the current state of the
knowledge base. It should be possible to examine
knowledge stored in the knowledge base and to derive
interface requirements for, say, window layout or dialog
sequence, that are not defined explicitly in the knowledge
base. L-CID allows for this type of inference. One way to
achieve such functionality is to assume a learning-by-
deduction strategy in the learning layer of L-CID. Unlike
the learning-by-examples strategy of the previous
example, learning-by-deduction does not observe the
interactions with the user. Instead, the strategy consists of
examining the current state of the knowledge sources of
the interface layer, and augmenting them by deducing

additional facts and knowledge from the present state. In
this manner, the learning layer can deduce, for example,
the unknown parameters of a window layout from the
existing knowledge about the user.

To illustrate this feature of L-CID, we shall describe an
example of the generation of a graphical interface from
domain knowledge. In our case, the domain is that of
clinical trials for AIDS patients. In these trials, physicians
administer new drugs to patients according to a treatment
plan specified by documents called protocols. The
documents are written by committees of physicians who
are experts in the field of AIDS therapy. Normally, the
procedural part of a protocol—the sequence of actions that
the administering physicians must follow—is drawn as a
flowchart. The symbols allowed in protocol flowcharts are
those of relevance to the particular area of treatment. For
AIDS therapy, these symbols include terms such as
medication, regimen (the administration of one or more
medications), and laboratory test.

Domain knowledge can be represented as a structured
collection of terms, and of their interrelationships; this
collection is called an ontology. Figure 5 shows the
domain ontology for our example. If we assume that the
ontology of Figure 5 is stored in the interface layer of
L-CID, we can infer from such domain knowledge several
characteristics of an interface for constructing protocols,
including the composition and behavior of the interface.
The terms defined by the ontology prescribe the legal

Figure 4. Abstract view of a blackboard
implementation of L-CID that tests learning
techniques for modality selection. The model
knowledge sources contain facts about features of
users, tasks, environments, and computers. The
goal of the learning layer is to map an interaction
mode to every possible combination of feature
values in the model knowledge sources by
observing examples of interactions with users.

Map
of
Modes

Task
Model

Environment
Model

Computer
Model

User
Model

Interface LayerCriticEvaluation
Expert

Learning Layer

Root

Figure 5. A domain ontology for AIDS therapy.
The ontology structures the terms of relevance
and describes the relationships among terms.

Protocol

RegimensTests

MedicationsPart-of
Relationship
Part-of
Relationship

Figure 6. An interface that allows an expert physician to draw AIDS protocols as flowcharts. Physicians are
presented with a palette of graphical elements (lower window) derived from the domain ontology (with the addition
of control primitives). The upper window is a subwindow that expands the test box (for T-Cell counts) of the middle
window.

symbols for the flowcharts of protocols. The part-of
relationships constrain the possible combinations of
symbols that can be used in the flowchart. For example, in
this context, a laboratory test cannot include the
administration of a medication.

Figure 6 shows an interface for the drawing of protocols in
the AIDS-therapy domain. The symbols declared in the
domain ontology are represented as elements of a palette
for a graphical editor. The constraints derived from the
ontology result in connectivity limitations of the palette
elements. For instance, note that the upper window in the
figure expands the test box (T-Cell) of the main protocol
window to detail the latter's internal procedure. As
inferred from the domain ontology in our example,

dragging a medication box from the palette onto the
drawing area of the upper window is an illegal operation in
this interface.

Interfaces like the one shown in Figure 6 are generated
within PROTÉGÉ-II [10, 13]—a knowledge-acquisition
shell that produces automatically knowledge-acquisition
tools that domain experts can employ to edit an expert
system's knowledge base. Although, in this case, we
showed only how a generic graphical editor can be
custom-tailored to a given domain, other types of
knowledge can be used to make interface-design
decisions. For example, knowledge about interaction
modalities, and the fact that protocols are procedural in
nature, can determine that the most appropriate interaction

style for the interface to be generated is a graphical editor.

DISCUSSION
Defining what an intelligent interface is remains a difficult
problem. Categorizing an interface as intelligent or dumb
seems to be just as hard. In any given case, every
researcher appears to have a different answer. Is an
interface intelligent because it interacts with a knowledge-
based system, even though it does not use knowledge to do
so? Or is knowledge use sine qua non? What if knowledge
was used to create the interface, but not to run it? Other
branches of artificial intelligence present less of a
challenge when it comes to definition and classification of
their products. Machine-learning systems, tutoring
systems, and expert systems, are examples of systems that
are normally less difficult to categorize. This peculiarity
of intelligent interfaces is not the result of intrinsic
complexity. Rather, it is the consequence of the emphasis
of researchers in studying the use of intelligent interfaces,
as opposed to studying their definition. When use of a
system is researched, the end product is a series of
architectures. But, when definition of a system is the
focus of the research, the end product is a series of models.

There are three key benefits that a model of an intelligent
interface offers: (1) it establishes the knowledge
requirements of the interface, (2) it prescribes the
functionality provided by the system, and (3) it defines the
concept of an intelligent interface. The L-CID model
presented in this paper identifies the knowledge
requirements for an intelligent interface and explicitly
represents them as knowledge sources within a blackboard
model. In addition, it helps researchers and developers to
visualize how functions such as machine learning, self-
adaptation, and user-interface management can be
performed. Furthermore, L-CID forms a basis for
categorizing interfaces as intelligent, to a discrete degree,
according to how many of the knowledge requirements are
fulfilled. On the other hand, architectures are useful to
study specific implementation issues. Problems such as
the appropriateness of knowledge representations,
effectiveness of learning techniques, or efficiency of
control strategies can be solved at only the architecture
level. But unless architectures are abstracted into general
models, they cannot provide any of the benefits that I have
enumerated. In the ideal situation, however, research is
conducted along both lines—that is, models and
architectures are used synergistically. For example, when
architectures are derived from models, the difficulties
encountered implementing the architecture can help
researchers pinpoint faults in the conceptual model.
Conversely, when problems arise with an architecture,
comparing it with general models of the system may
identify shortcomings in the design of the architecture.

By giving more attention to models, researchers of

intelligent interfaces should be able to understand and
define more precisely the conceptual issues that affect the
development of these systems. L-CID serves as a basis for
the study of those issues, as well as for the development of
new architectures. By coordinating the definition of
models and the implementation of architectures,
researchers can finally provide the impulse that the field of
intelligent interfaces needs to become an important area
for both artificial intelligence and human–computer
interaction.

ACKNOWLEDGMENTS
I would like to thank Ronald Bonnell, John Egar, Henrik
Eriksson, and Mark Musen for their insightful comments
and discussions that have helped build L-CID and its
implementations. I am also grateful to Lyn Dupré for her
editing of a previous version of this paper

REFERENCES
1. Buchanan, B., Mitchell, T.M., Smith, R.G., and

Johnson, C.R. Models of learning systems. In
Encyclopedia of Computer Science and Technology,
Belzer, J., Holzman, A.G., and Kent, A., editors.
Marcel Dekker, New York, 1977, Volume 11, pp. 24–
51.

2. Card, S.K., Moran, T.P., and Newell, A. The
Psychology of Human–Computer Interaction. LEA
Associates, Hillsdale, New Jersey, 1983.

3. Card, S.K. Human factors and artificial intelligence.
In Intelligent Interfaces Theory, Research, and Design,
Hancock, P.A. and Chignell, M.H., editors. North
Holland, New York, 1989, pp. 27–41.

4. Cypher, A. EAGER: Programming repetitive tasks by
example. In Proceedings of CHI‘91, Robertson, S.P.,
Olson, G.M., and Olson, J.S., editors, pp. 33–40. New
Orleans, Louisiana, May 1991.

5. Edmonds, E.A. The man–computer interface: a note
on concepts and design. International Journal of
Man–Machine Studies, 16, (1982), 231–236.

6. Hayes-Roth, B. A blackboard architecture for control.
Artificial Intelligence, 26, (1985), 251–321.

7. Nii, H.P. Blackboard systems: The blackboard model
of problem solving and the evolution of blackboard
architectures. AI Magazine, 7(2), (1986), 38–53.

8. Martin, F.A. Control models in computer assisted
learning. Expert Systems, 5, (1988), 316–326.

9. Maulsby, D.L., Witten, I.H., Kittlitz, K.A., and
Franceschin, V.G. Inferring graphical procedures: The
compleat metamouse. Human–Computer Interaction,

7, (1992), 47–90.

10. Musen, M.A. Automated Generation of Model-Based
Knowledge-Acquisition Tools. London: Pitman,
London, England, 1989.

11. Puerta, A.R. L-CID: A Blackboard Framework to
Experiment with Self-Adaptation in Intelligent
Interfaces, Doctoral Dissertation, USCMI Report
Number 90–ESL–6, Center for Machine Intelligence,
University of South Carolina, Columbia, South
Carolina, July 1990.

12. Puerta, A.R. Rapid prototyping of self-adaptive
interfaces with the L-CID model. In Proceedings of
the Intelligent Multimedia Interfaces Workshop,
AAAI-91, pp. 37–46. Anaheim, California, July
1991.

13. Puerta, A.R., Egar, J.W., Tu, S.W. and Musen, M.A. A
multiple-method knowledge-acquisition shell for the
automatic generation of knowledge-acquisition tools.
Knowledge Acquisition, 4, (1992), 171–196.

