
Generation of Knowledge-Acquisition Tools from

Domain Ontologies

Henrik Eriksson Angel R. Puerta Mark A. Musen

Medical Computer Science Group

Knowledge Systems Laboratory

Stanford University School of Medicine

Stanford, California 94305-5479, U.S.A.

Abstract

Metalevel tools can support the software development process by automating the design

of task- and application-speci�c tools. Dash is a metalevel tool that allows developers

to generate domain-speci�c knowledge-acquisition tools from domain ontologies. Do-

main specialists use the knowledge-acquisition tools generated by dash to instantiate

the concepts and relationships de�ned in the domain ontologies. The output of the

knowledge-acquisition tools is a collection of instances that constitute the knowledge

base for a knowledge-based system.

To automate the generation of appropriate tools, the dash architecture uses a dialog-

design module to produce a dialog structure that de�nes the target tool at the editor

and window level. Given the dialog structure, a layout-design module completes the

window layouts. Dash allows the developer to custom tailor the layout of the knowledge-

acquisition tool for its users, and to store such modi�cations persistently so that they can

be reapplied when the target tool is regenerated. The dash implementation is based

on a mapping problem-solving method that de�nes the tool-design steps. The Dash

Development Environment (dde) is an application-speci�c environment that supports

the con�guration of the mapping method and the maintenance of dash. We have used

dash to generate several knowledge-acquisition tools for a broad range of application

tasks.

1 Tool Generation

Much of the current research on knowledge acquisition from domain experts is focused on the

reuse of prede�ned ontologies and problem-solving methods for knowledge-based systems,

and on tools that support knowledge acquisition for such architectures (Karbach, Linster &

Vo�, 1990; Marques, Dallemange, Klinker, McDermott & Tung, 1992; McDermott, 1988;

Neches, Fikes, Finin, Gruber, Senator & Swartout, 1991; Steels, 1990; Puerta, Egar, Tu &

Musen, 1992). An ontology is a declarative model of the terms and relationships in a domain.

Typically, ontologies are organized as class hierarchies, where each class de�nes a set of

objects of a certain type (Neches et al., 1991). Each class has a set of attributes, often

1

called slots, which models the concept that the class represents. A problem-solving method

is a domain-independent strategy for performing a task, such as classi�cation, design, or

planning. Such problem-solving methods take advantage of knowledge bases in performing

their task. Method-speci�c knowledge-acquisition tools can support knowledge acquisition for

problem-solving methods. Based on their methods' problem-solving model, such tools acquire

from domain specialists the knowledge required to accomplish the task. However, because

reusable methods use concepts de�ned primarily by computer scientists, nonprogrammers

�nd it di�cult to use knowledge-acquisition tools that are based on such conceptual models

(Musen, 1989a).

Domain-speci�c tools, on the other hand, are based on the terms and relationships of the

application domain. Domain specialists interact with such tools by using their own termi-

nology. Opal (Musen, Fagan, Combs & Shortli�e, 1987) is an example of a domain-speci�c

knowledge-acquisition tool that is based on a strong domain model|treatment plans for

cancer. Domain experts use opal to edit graphically skeletal plans for the oncocin advi-

sory system (Tu, Kahn, Musen, Ferguson, Shortli�e & Fagan, 1989). The disadvantage of

domain-speci�c tools is that they require much work for implementation and maintenance.

Researchers are solving this problem with metatools that generate domain-speci�c tools au-

tomatically from high-level speci�cations (Eriksson & Musen, 1993).

The metatool prot�eg�e-i (Musen, 1989a; Musen, 1989b) uses instantiation of a problem-

solving method for an application domain as the basis for the generation of domain-speci�c

knowledge-acquisition tools. Prot�eg�e-i demonstrated how metatools can instantiate auto-

matically tools similar to opal for new domains. The drawback of traditional method-speci�c

approaches, however, is that the metatool is coupled to a speci�c problem-solving method

(e.g., skeletal planning) for the application system, and that the metatool cannot generate

target tools for other problem-solving methods. The metatool Spark (Marques et al., 1992)

uses a generalized approach in that it associates a method-speci�c, con�gurable knowledge-

acquisition tool with each problem-solving method in a library of prede�ned methods. In this

approach, knowledge acquisition for systems constructed from several problem-solving meth-

ods require a set of such knowledge-acquisition tools. Although the Spark approach addresses

the problem of multiple and alternative problem-solving methods, it is di�cult to ensure that

a collection of primitive knowledge-acquisition tools provides a coherent view to the domain

specialists.

The metatool dots (Eriksson, 1992; Eriksson, 1993) uses an architectural speci�cation of

the target knowledge-acquisition tool as the basis for the tool generation. Although dots

is general with respect to the target tools that it can generate, we have found that dots is

di�cult to use for developers who are unfamiliar with the design and generation of domain-

speci�c knowledge-acquisition tools. Dots solves much of the software-engineering problem

of implementing a domain-speci�c knowledge-acquisition tool, but it provides little support

for the design of an appropriate knowledge-acquisition tool for an application domain.

In this paper, we describe dash, a metatool that generates knowledge-acquisition tools

from domain ontologies. Dash designs a knowledge-acquisition tool by �rst generating a

dialog structure|an abstract map of the editor and window structure of the tool, and of how

the user might proceed among the windows. Next, dash generates the details of each window

based on the dialog structure, and on the class de�nitions in the input ontology. When dash

has completed the window layouts, the metatool allows the developer to custom tailor the

target tool for an application domain, and for individual users (using a graphical interface-

2

design tool). The output of dash is a declarative speci�cation of the target tool that can be

executed by a run-time system, or, alternatively, compiled into C code.

Dash is part of the prot�eg�e-ii environment, which supports development of knowledge-

based systems from reusable problem-solving methods (Puerta et al., 1992; Puerta, Tu &

Musen, 1993). Also, the prot�eg�e-ii architecture includes support for de�ning and editing

domain ontologies. Because dash is a relatively complex system to maintain and extend,

we have designed the Dash Development Environment (dde), which is a graphical tool that

supports the maintenance of dash.

This article is organized as follows: Section 2 introduces the use of metatools in application

development. Section 3 discusses the use of the domain ontologies as the basis for tool

generation. Section 4 presents the dash architecture. Section 5 provides an illustrative

example of tool generation from domain ontologies in dash. Section 6 discusses dde and

its use. Section 7 summarizes and discusses the dash approach; conclusions are drawn in

Section 8.

2 Development with Metalevel Tools

Knowledge acquisition and system development with metalevel tools di�er from conventional

software development in several aspects, because the development process involves tool design.

We are interested primarily in knowledge-acquisition tools that allow nonprogrammers to edit

knowledge structures graphically. Such knowledge editors must incorporate a domain model

that is valid cognitively for the tool users. Before discussing how we can adapt development

methodologies to take advantage of metatools, we must �rst establish the role of the target

tools in the development process.

We shall exemplify the type of knowledge-acquisition tools that we are generating by

examining parts of a tool generated by dash. Figure 1 shows a domain-speci�c form from

a knowledge-acquisition tool that allows physicians to edit treatment plans for clinical trials

(clinical-trial protocols). This form allows oncology specialists to de�ne the relevant aspects

of the treatment plan in domain-speci�c terms. The tool user may enter the information in

any order. In Figure 1, the tool user has entered \Pyrimethamine Therapy for Prevention of

Toxoplasma" as the protocol title in the form. Moreover, the tool user has provided a list

of the investigators responsible for the protocol design. By selecting one of the items in the

investigator browser, and by clicking on the edit button, the user can edit information|in

a separate form|about each investigator (such as institution and telephone number). Note

that the form incorporates domain terms that are meaningful to domain specialists, but

not necessarily to other people. This knowledge-acquisition tool is similar to opal (Musen

et al., 1987) in that it acquires knowledge for management of treatment plans. The principal

di�erence between these tools is that opal is speci�c to the cancer-treatment domain, whereas

the tool shown in Figure 1 is speci�c to aids treatment.

The use of knowledge-acquisition tools a�ects the development methodology in that do-

main specialists participate actively in the development process by providing directly much

of the domain knowledge required. In other words, the domain specialists perform a detailed

system design by providing the knowledge structures that de�nes the knowledge base. The

role of a metatool in this development approach is to enable the developer to provide a suitable

tool for the domain specialists.

Many conventional development methodologies can be adapted to take advantage of meta-

3

Figure 1. Domain-speci�c form for the de�nition of clinical-trial protocols for aids treatment

generated by dash. At the top of this form, there are �elds for the protocol number, title,

and purpose. Moreover, this form provides a collection of browsers that allows the tool user to

add, delete, and edit de�nitions for investigators, eligibility criteria, and so on. The buttons

labeled \Algorithm," \Duration," and \Follow Up" provide access to subforms that domain

specialists use to de�ne these aspects of the protocol.

4

Principal
design

Implementation of
knowledge-acquisition tool

Detailed design with knowledge-
acquisition tool (editing)

Tool and system
validation

Test and verification

Figure 2. Development methodology with a metatool. The developer completes the principal

design of the target system (e.g., a domain ontology), and implements a knowledge-acquisition

tool, which is used by domain specialists to edit domain knowledge (detailed design). After

using the tool for some time, the developer and the tool user validate the tool and its output.

Note that validation of the knowledge-acquisition tool and the system might induce changes to

the principal design, such as changes to a domain ontology. Finally, the developer submits the

application system to test and veri�cation. Although this approach is based on the waterfall

model, it is possible to take advantage of metatools in other methodologies, such as iterative

and spiral models.

tools. Figure 2 shows a development model that incorporates the use of metatools and

knowledge-acquisition tools. (Note that this model is based on the waterfall model. Com-

pared to the strict waterfall model, we have relaxed the constraints on iteration in our model.)

Here, the developer analyzes the application task, and makes a principal design of the system.

In the dash approach, the principal design consists of a domain ontology that can be used

by dash to generate the target tool. The developer may want to revise the principal design

after testing the knowledge-acquisition tool. The extended use of a knowledge-acquisition

tool by the domain specialists can uncover shortcomings in the tool, and in the principal

design. In these cases, the developer must revise the principal design, and must regenerate

the knowledge-acquisition tool. Typically, the developer maintains the knowledge-acquisition

tool over the application's life cycle.

3 Ontologies as the Basis for Knowledge-Acquisition

Tools

The knowledge-acquisition tools that we generate from domain ontologies are designed to

edit instances of the ontologies by providing a collection of domain-speci�c editors for the

5

Tool assumptions (e.g., knowledge-

acquisition principles)
Dev

elo
pm

en
t t

oo
ls

(o
nto

log
y e

dit
or

, D
ASH)

Tool run-time systemEditor-interface ontology

Domain ontology

Knowledge-acquisition tool

Figure 3. Design of knowledge-acquisition tools from domain ontologies. This model is in-

spired by model-based design of user interfaces (de Baar et al., 1992). A high-level application

model, in our case a domain ontology, is the basis for the tool design. The instances of the

editor-interface ontology together with the tool run-time system form the target knowledge-

acquisition tool. Prot�eg�e-ii provides a set of development tools for editing the domain

ontology, and for generating the editor-interface ontology. Note that model-based design

must make assumptions about the target system. Dash, for instance, makes the assumption

that the target tools are domain-speci�c knowledge-acquisition tools.

tool user. For example, when domain specialists �ll out forms in the tools, they are editing

instances of the classes that de�ned the forms. The tool users can save the information entered

in these editors persistently for later use, and can produce instance de�nitions suitable for

the application system from the information in these editors. The application system uses

both the classes in the ontology and the instances of these classes provided by the knowledge-

acquisition tool.

The dash approach to the generation of knowledge-acquisition tools is inspired by model-

based design (Figure 3). Model-based design is an approach where an application model

is used as the basis for the design of the target system. Researchers in human{computer

interaction are using application models as the basis for the user-interface design (de Baar,

Foley & Mullet, 1992). In the dash approach, the target system is the knowledge-acquisition

tool. We are using the domain ontology as the model for the tool application, and are using

dash to generate instances of the editor-interface ontology, which de�ne the target tool, from

the domain ontology.

The basic idea for tool generation from ontologies is that a metatool can map the data

types of slots in a class de�nition to user-interface components of the knowledge-acquisition

tool. Typically, the metatool generates editors for instances of each class in the ontology

based on such mappings. The target knowledge-acquisition tool consists of a collection of

such editors. Although the basic idea is relatively simple, there are many fundamental and

technical problems that must be addressed before we can generate knowledge-acquisition tools

6

(slot chapter11 (type boolean))

(slot employee (type instance)
(allowed-classes person))

Chapter 11

link

(a) (b)

Person editor

Figure 4. Example of a simple mapping from slot de�nitions to user-interface components.

(a) De�nitions for the Boolean slot chapter11 and for the instance-pointer slot employee.

(b) Form �elds (widgets) for these slots. The user edits the value of the slot chapter11 by

clicking on a check box. Because the slot employee is a pointer to another instance, the slot

is edited by clicking on the employee button that opens a \person" editor.

that are useful for practical software development. For instance, the metatool must analyze

the ontology, and must create a high-level design of the target tool before it can apply such

slot{interface mappings, because the metatool must establish the editors before it can design

the editors' user interfaces. Moreover, the metatool must identify the slots that de�ne the

relationships among instances of di�erent classes to design the connections among di�erent

editors in the knowledge-acquisition tool.

Let us examine an example of how a metatool can use class de�nitions in the ontology

to generate form �elds in a knowledge-acquisition tool. Figure 4 shows an example a simple

mapping from slots in a class de�nition to user-interface widgets. The major advantage

using domain ontologies as the basis for tool generation is that such ontologies, at least in

object-oriented approaches, are de�ned as part of the regular development process. Thus,

both the knowledge-acquisition tool and the �nal application system are based on the same

ontology. Also, this approach combines the level of
exibility provided by dots with the

level of design support provided by prot�eg�e-i. In the dash approach, the additional e�ort

required for developing a knowledge-acquisition tool for the application domain is small, which

makes use of domain-speci�c tools cost e�ective.

4 The DASH Architecture

The metatool dash generates knowledge-acquisition tools from domain ontologies. Typically,

the developer uses the ontology editor provided by prot�eg�e-ii to de�ne such ontologies. The

developer uses dash to generate an initial version of the tool, which can be custom tailored

by the developer for the domain and for the tool user.

The dash architecture consists of a dialog-designer module and a layout-designer module.

Dash designs the target tools top down by �rst invoking the dialog designer, and then run-

ning the layout designer. The dialog designer creates an abstract description of the editors in

the knowledge-acquisition tool and their relationships. The layout designer instantiates the

7

Figure 5. The dashboard. This control panel shows the main components of dash, and

allows the developer to control the generation of knowledge-acquisition tools.

editors|in particular, their window layout. Figure 5 shows the control panel for the dash

system. Developers use this panel to invoke tool generation in dash, to inspect intermedi-

ate results, and to custom tailor the knowledge-acquisition tool. We shall discuss the most

important subcomponents of the dash architecture.

4.1 Dialog Design

The generation of knowledge-acquisition tools from domain ontologies is not merely a matter

of mapping slot data types to user-interface components. Before a metatool can apply this

mapping, it must design the overall structure of the knowledge-acquisition tool. The purpose

of the dialog-designer module is to establish this high-level structure of the target tool. We

use the term dialog structure to denote the con�guration of windows, browsers, editors, and

forms, and the way in which the tool user navigates these tool components. Such accessibility

relationships are an important part of the design of knowledge-editing tools. In dash, the

dialog structure is represented as a graph where the nodes represent editors, and the links

among the nodes represent accessibility relations. Thus, the dialog structure provides an

8

Class definitions

Form

Form

Form

Main menu

Browser

Browser

Figure 6. The mapping in dash from class de�nitions in the input ontology to the dialog

structure of the target tool. Most classes in the ontology correspond to a form node in the

dialog-structure graph. Dash's dialog-designer module adds the browsers required to access

multiple forms, as well as the main menu for the knowledge-acquisition tool. The main menu

and the browsers are located on separate windows.

outline of the tool at the editor and window level.

Dash uses the relationships among classes in the domain ontology as the basis for the

dialog structure. The dialog designer uses a set of design rules to produce the dialog structure

automatically. First, the dialog designer analyzes the class de�nitions in the ontology, and

builds an index of the class relationships. Next, the dialog designer traverses the class de�ni-

tions, and creates editor templates for each of the relevant classes. As part of this process, the

dialog designer links the editor templates according to the relevant class relationships (e.g.,

the is-part relations). Finally, the dialog designer adds the components required to access the

editors, such as the main menu and scrollable list browsers for collections of items.

Figure 6 illustrates the generation of dialog structures from class de�nitions. The example

dialog structure consists of the main menu of the target tool, which provides access to two

browsers, and to a single form-based editor. In turn, these browsers provide access to lists

of items that can be edited by other forms. The dashed arrows in Figure 6 illustrate how

the dialog designer maps class de�nitions to form-based editors in the dialog structure. The

dialog designer adds the main menu and the browsers to the graph automatically. Each node

in the dialog structure, including the main menu and the browsers, corresponds to a screen

window in the target tool.

The dialog designer uses information from the domain ontology to produce the dialog

structure. The developer can declare the classes whose instances should be edited at the top

9

level of the knowledge-acquisition tool (i.e., editors, such as forms, for these instances should

be available directly under the main menu). Typically, these classes represent the most

important concepts in the domain. Other relevant classes may be available as subeditors

to the top-level editors. Depending on the cardinality of the instances that the forms are

editing, the dialog designer inserts appropriate browsers in the dialog-structure graph. The

dialog designer inserts browsers if the corresponding class is declared to have more than one

instance.

4.2 Layout Design

To complete a knowledge-acquisition tool, we must design the details of each editor and

window in the dialog structure. The task of the layout-designer module is to instantiate the

editors of the target tool given the dialog structure. The layout designer traverses the dialog-

structure graph top down, and generates editor de�nitions based on the nodes in the dialog

structure, and on the corresponding class de�nitions in the domain ontology.

The layout designer uses an intermediate representation of the editors. The �rst step in

the layout-design process is to map the class slots to selectors (Johnson, 1992). Selectors

are high-level representations of user-interface widgets. Selectors represent a function (e.g.,

selection of an item from a list), rather than the widget implementation of this function (e.g.,

pull-down menus and radio buttons). The next step is to instantiate the selectors to widgets,

and to lay out the widgets on the forms and windows.

The layout-designer module is responsible for the window layouts. The layout designer

uses a layout algorithm that allows the developer to set primary layout parameters, and

to custom tailor the layout generated. The goal of the layout designer is not to generate

the �nal layout, but rather to produce a layout that the developer can custom tailor easily.

There are many fundamental di�culties in generating automatically appropriate layouts from

ontologies, because the slot de�nitions contain insu�cient and inconclusive information for

layout purposes. Note that the layout algorithm operates on widgets rather than on selectors,

because selectors do not have a de�nite geometry before they are instantiated to widgets. Also,

the developer can custom tailor the widgets, but not the selectors. This approach allows the

developer to adjust the details for the target tool's user interface (such as rearranging the

items in a pull-down menu).

Figure 7 illustrates the mapping from the slots in a class de�nition to the selector repre-

sentation, and to the widget representation. The layout designer uses a set of design rules

to map each slot to a selector. This mapping is based primarily on slot data types. Another

set of design rules de�nes the mapping between the selectors and their widget counterparts.

The latter mapping is one to many, because several widgets might be required to implement

certain selectors. For instance, a list browser selector is typically implemented by a collection

of widgets, such as add, delete, and edit buttons, and the browser widget itself.

When the layout designer has instantiated and laid out the widgets, the developer may

make custom adjustments to the layout (Figure 7). Dash allows the developer to custom

tailor the user interface of the knowledge-acquisition tool using NeXT's Interface Builder

(NeXT, 1990). Interface Builder is a graphical development tool for user interfaces. In this

step, the developer can change the layout, and can relabel items by direct manipulation (see

Figure 8). When the developer has completed the custom adjustments, dash �nalizes the

speci�cation of the target knowledge-acquisition tool.

10

Selector Widget
Knowledge-
acquisition tool

Class definition

Custom adjustment

Form

Selector

Dash output

Window

Widget

Figure 7. The mapping in dash from class de�nitions to selectors and to widgets of the

target tool. Dash maps slots to selectors (i.e., abstract user-interface widgets) to create an

intermediate design representation. Dash then instantiates the selectors to widgets depending

on the context in which the selectors are used, and on the current design policy.

(a)

(b)

Figure 8. Use of a graphical tool to custom tailor a form layout. (a) The default layout

generated by dash before adjustments. (b) The layout after manual adjustments. The

developer can position and resize widgets, and can change labels.

11

4.3 Persistent Custom Adjustments

Normally, the developer designs incrementally the ontologies that dash takes as input. It is

extremely di�cult to design a correct and complete domain ontology without de�ning rep-

resentative instances of the ontology, and without testing the ontology with the application

system. Some
aws in the domain ontology might be discovered relatively early in the devel-

opment process. For instance, shortcomings uncovered in the use of the knowledge-acquisition

tool may induce changes to the principal system design, and to the domain ontology (Fig-

ure 2). Examples of such changes include addition and deletions of slots in a class de�ni-

tion. Because domain ontologies may change after dash has generated the corresponding

knowledge-acquisition tool, dash must support regeneration of the target tools. A developer

may expend much e�ort custom tailoring a tool for an application domain, and it is important

to preserve such manual changes so that they are not lost in the automatic regeneration of

the knowledge-acquisition tool.

One approach to reduce this maintenance problem is to defer the custom tailoring of the

tool until the domain ontology has stabilized. However, according to our experience, many

shortcomings of the domain ontology are not apparent until the knowledge-acquisition tool|

and even the application system|has been used for some time. The developer cannot defer

custom adjustments of the tool until that stage. The dash approach to this custom-tailoring

problem is to store the changes persistently in a database, and to reapply the previous adjust-

ments when dash regenerates the knowledge-acquisition tool (see Figure 9). The advantage

of this approach is that the developer can begin using dash with a temporary ontology; it is

not necessary to complete the ontology before generating the �rst version of the knowledge-

acquisition tool.

As illustrated in Figure 9, dash looks for previous custom adjustments, and, if they

are present, reapplies them to the tool design. Next, dash allows the developer to make

additional custom adjustments to the tool. For instance, such adjustments might be required

when the developer adds new classes to the ontology. Finally, dash outputs a new version of

the database for use in future regenerations of the target tool. Also, dash provides an editor

for the custom-tailoring database. The developer can use this editor to inspect, change, and

withdraw entries in the database. An example of the use of this editor is when the developer

previously has deleted a form �eld, and later wants to recall it. The developer can recall the

�eld by removing the appropriate deletion record from the database.

4.4 Tool Design as Mappings

Dash can be viewed as a knowledge-based design system for knowledge-acquisition tools,

because it incorporates design knowledge for such tools. Thus, dash performs the task

of an expert designer for domain-speci�c knowledge-acquisition tools. In many ways, the

domain ontology that serves as input to dash acts as a speci�cation for the target tool.

We can view the dash architecture as a series of mappings that constitute the tool-design

process. Dash maps the structure of the input ontology to the dialog structure using a set

of design rules. Moreover, dash maps the dialog structure together with the ontology to the

selector representation, and then to the widget representation of the target tool (Figure 7).

Finally, dash maps the widget representation to a format that can be translated to C code,

or interpreted by a tool run-time system (see Figure 3).

The initial version of dash that we developed used a combination of procedural code

12

Ontology DASH
Knowledge-
acquisition tool

nn–1

Figure 9. Use of the custom-tailoring database. Dash uses the database generated in the

previous session (n � 1) to install the previous adjustments. The developer can then make

further adjustments. As part of the tool-generation process, dash saves the current custom

adjustments in a new version of the database (n).

and declarative mapping rules to design the target tools. After evaluating this version, we

discovered a problem-solving pattern in many of subtasks of the tool-design process. Also,

this version had grown increasingly di�cult to maintain and extend. From the initial version

of dash, we abstracted the mappings, and implemented an explicit mapping method that can

perform the mappings required in dash (see Figure 10). We have con�gured this mapping

method using object-oriented programming and production rules to implement the four most

important mappings in the dash architecture: from the ontology to the dialog structure, from

the dialog structure to the selectors, from the selectors to the widgets, and from the widgets

to the output tool de�nition.

Figure 11 shows an example of mappings used in dash. The �rst instantiation of the

mapping method maps slot de�nitions in the ontology, such as lists of instance pointers, to

items in the dialog structure. The second method instantiation maps the dialog items to

selectors. A slot that de�nes a list of instance pointers, for instance, would be mapped to

a browser selector. In turn, the third method instantiation maps the browser selector to a

set of widgets (i.e., a browser widget and add, delete, and edit button widgets). Finally, the

fourth method instantiation maps the widgets to the output format.

The mapping task in dash di�ers from other mapping tasks in prot�eg�e-ii (Gennari,

Tu, Rothen
uh & Musen, 1994) in that it requires structure mappings (i.e., mappings from

a graph of objects to another graph of objects). In dash, selectors, for instance, must be

mapped to widgets as part of the tool-design process. However, there is not always a one-to-

one correspondence between selectors and widgets. Moreover, selectors are sometimes linked

to other selectors, and this linkage must be carried over to the widgets. (For instance, a

button selector may be linked to a subform, and the corresponding button widget must be

linked to the appropriate window representation.) The mapping method in dash supports

these mappings by automating some of the structure translations. This feature simpli�es the

mapping rules, and makes the con�gurations of the mapping method easier to maintain.

In summary, we have found the mapping method to be an extremely useful basic compo-

nent in the dash architecture. The principal advantage of the use of several instantiations

of a mapping method in dash is that the maintenance and extension tasks are simpli�ed.

It is possible to support additional languages for input ontologies by con�guring a new in-

13

Index

Input
structure

Abstraction

Templates
Target

structure

Figure 10. The structure of dash's mapping method. The method indexes the input

structure and abstracts mapping-speci�c features from the input structure using the index

information. Next, the method uses a set of mapping rules to generate templates for the target

structure. Finally, the method uses another set of rules to instantiate the target structure

from the templates. Currently, we use four instantiations of this mapping method to de�ne

the dash system.

button

button

button

browser

browser dialog item
(dialog structure)

slot definition
(ontology)

form selector

window widget

browser widgets

finalization
browser selector

mapping

1

2 3 4

Figure 11. An example of a mapping chain in dash. Each arrow represent an instantiation

of dash's mapping method.

14

(defclass company (is-a USER)

(slot name (ka-specification browser-key) (type string))

(slot telephone (type string))

(slot fax (type string))

(slot chairperson (type string))

(slot employees (cardinality multiple)

(allowed-classes person) (type instance))

(slot chapter11 (type boolean))

(ka-specification top-level)

(max-number-of-elements 100)

)

(defclass person (is-a USER)

(slot name (ka-specification browser-key) (type string))

(slot SSN (type integer))

(slot address (type string))

(slot city (type string))

(slot state (type string))

(slot zip-code (type integer))

(slot telephone (type string))

)

Figure 12. Sample ontology that consists of class de�nitions for companies and persons.

Each company has a list of employees, which are instances of the class person.

stantiation of the mapping method. Similarly, it is possible to add new de�nition languages

for target knowledge-acquisition tools. The mapping method also allows for tool-supported

maintenance and testing of dash (Section 6).

5 Tool Generation: An Example

To illustrate the use of dash, we shall discuss the generation of a sample knowledge-acquisition

tool from a domain ontology. To simplify this example, we use a small ontology that is not

particularly knowledge intensive. Let us assume that we have modeled a business domain,

and have de�ned an ontology that consists of class de�nitions for companies and persons.

We identify the relevant attributes for companies and persons, and we assume that each

company has a list of employees. Figure 12 shows our class de�nitions for company and

person. (Although we are using a textual ontology format for this example, the prot�eg�e-ii

environment includes a graphical editor for ontologies.) Note that the ka-specification

class facet for company speci�es that we need a top-level editor under the main menu for this

class. Also note that the maximum number of company elements is 100. In both classes, the

ka-specification facet for the slot name speci�es that this slot should be the key in list

browsers.

When we open this ontology with dash, a dashboard window for the ontology will appear

on the screen (see Figure 5). From the dashboard, we can inspect the tool design at various

stages, and can issue tool-generation commands. Let us begin the tool-generation process by

generating the dialog structure for the tool. We issue this command by clicking on the \Build

Dialog Structure" button on the dashboard (see Figure 5). Figure 13 shows the resulting

15

Main menu List browser Company Person

Figure 13. The dialog structure for the ontology shown in Figure 12. This dialog structure

states that there is a list browser available under the main menu of the target tool. The list

browser provides access to a list of companies, which the tool user can edit with a company

editor. In turn, the company editor provides access to a list of persons, which the tool user

can edit with a separate person editor.

dialog structure. In this example, the target tool will have one list browser under the main

menu. This browser will provide access to a list of companies. Each company has a list of

employees, which are instances of the class person.

The next step in the generation process is to generate the layout for the editors de�ned

(by nodes) in the dialog structure. We generate the layout by clicking on the \Build Layout"

button on the dashboard. After dash has completed the layout design, we can custom tailor

the user interface of the tool in NeXT's Interface Builder (see Figure 14). When we are

satis�ed with the layout, we save our modi�cations, and proceed with the tool generation

(by clicking on \Build KA Tool"). Dash will now record our changes in the custom-tailoring

database, and will produce the �nal de�nitions for the target tool.

At this point, we can compile the target tool to an executable system, or we can use a

tool interpreter to run the tool. Figure 15 shows a sample session with the target tool. We

have entered sample data in the tool, and have saved the result as instances of the company

and person classes (see Figure 16). The instances [kb1] and [kb2] contain slot{value pairs

with the information entered in the forms. Note that [kb1] has a list of employees with one

item, [kb2].

6 The DASH Development Environment

The Dash Development Environment (dde) is a graphical environment that allows us to

maintain and extend dash. Dde supports the di�erent con�gurations of the mappingmethod.

Furthermore, dde allows the dash designer to run diagnostic tests on dash, and to inspect

graphically most of the intermediate representations in the tool-generation process.

6.1 Background: DASH Maintenance

Because we are using dash to develop knowledge-acquisition tools on a regular basis in our

laboratory, we must maintain and extend the system continuously. Although an explicit

mapping method makes it easier to maintain dash, dash is still a complex system that can

be di�cult to support. Because of the complexity of the system and of its input data, it was

initially often time consuming to isolate problems, and to make the appropriate changes to

dash. Dde has been designed to streamline the maintenance and further development of

dash by organizing the code for the con�guration of the mapping method, and by supporting

tests and inspection of test runs.

19

Figure 14. Custom tailoring of the layout for the sample knowledge-acquisition tool. The

developer uses NeXT's Interface Builder to lay out the forms. Note that the main menu

(upper left) has a button that provides access to the company browser (to the right of the

main menu). The company form (lower left) contains a list browser for employees, which can

be edited with the person form (lower right).

20

Figure 15. The generated knowledge-acquisition tool. We have entered sample data for one

company with a single employee.

([kb1] of company

(name "Bogus Software, Inc.")

(telephone "1 (800) BUG-SOFT")

(fax "(415) 555-1212")

(chairperson "Dr. No")

(employees [kb2])

(chapter11 TRUE))

([kb2] of person

(name "Joe Hacker")

(SSN 123456789)

(address "99 University Ave.")

(city "Palo Alto")

(state "CA")

(zip-code 94301)

(telephone "(415) 555-2121"))

Figure 16. The output instances from the knowledge-acquisition tool in Figure 15. The

instances [kb1] and [kb2] are of the classes company and person, respectively (Figure 12),

and contain the information entered in the forms for company and person, respectively.

21

6.2 The Developer's Interface

When the dash developer starts dde, the main menu will appear on the screen (Figure 17).

This menu illustrates the dash architecture, and provides access to the functions of dde. The

upper part of the window shows a data-
ow model of the design process in dash. The user

can click on the nodes in the data-
ow diagram (such as input ontology, dialog designer, and

so on) to edit the instantiations of the mapping method (Section 4.4) in a con�guration tool

(Figure 18). The developer instantiates the mapping method by providing the appropriate

subclasses, methods, and rules. (The developer must design a method con�guration that

accomplishes the tool-design task through these de�nitions.)

The buttons in the lower left-hand corner of the window provide access to the selector

and widget ontologies, respectively. The button group in the lower center of the window

provides access to various subsystems of dash that do not �t neatly into the data
ow model,

such as user preferences, window layout algorithms, and functions related to the custom-

tailoring database. The buttons in the lower right-hand corner control the source �les of

dash. Finally, the button labeled \Test" in the upper right-hand corner provides access to

a test module for dash (Section 6.3). Note that dde is application speci�c, because its user

interface incorporates the dash architecture and makes assumptions about dash's mapping

method.

Figure 18 shows the graphical con�guration tool for the mapping method. This tool allows

the dash developer to con�gure instantiations of the mapping method. The lower half of the

mapping panel shows the structure of the mapping method (see Figure 10). The dde user can

access de�nitions (e.g., classes, methods, and rules) of the components of the mapping method

by clicking on the nodes in the data-
ow graph. Also, the developer can place de�nitions that

do not �t neatly into the method's data-
ow model (e.g., utility functions) under the button

for miscellaneous constructs.

By clicking on one of the nodes in the data-
ow model on the mapping con�guration

panel, the dde user can add new constructs (through a browser). These constructs bottom

out in Common Lisp extended with clos and production rules (Steele Jr., 1990; Keene, 1989).

Figure 19 shows a sample rule used in the method con�guration for the widget composer. This

rule states that selector components of the type form-entry-field where the field-type

is text should be mapped to a widget set, which consists of a display widget that shows the

�eld label (which is constructed by another rule) and a text-field widget. Also, the rule, if

activated, constructs some additional information that is needed by the text-field widget,

such as the origin of the widget and references to the ontology (i.e., the class and slot that

the text �eld corresponds to).

In addition to con�guration of the mapping method, the dde main menu provides access

to class de�nitions for selectors and widgets. The selector- and widget-ontology buttons open

browsers for these ontologies. Figure 20 shows a graphical tool that allow the dde user to

edit the widget ontology. (Dde provides a similar tool for the selector ontology.) Each node

in the graph represent a widget class (which is implemented as a clos class), and the links

among the nodes represent is-a links. For instance, a browser-add-button is a subclass of a

browser-button, which in turn is a subclass of a push-button. By clicking on the nodes in

the graph, the user can edit the class de�nitions.

22

Figure 17. The main menu for dde. This window illustrates the data-
ow relationships

in the dash architecture. The data-
ow diagram shows that the domain ontology is the

input to the dialog designer, and that the layout designer uses the dialog structure produced

by the dialog designer together with the domain ontology to produce selectors. The widget

composer uses these selectors to design the widgets, which are �nalized to the output structure

(by the EO composer). The dde main menu provides access to method con�gurations for the

mapping method. Also, the user can access ontologies and subsystems of dash, can manage

�les, and can run diagnostic tests of dash.

23

Figure 18. Con�guration of the mapping method in dde for the dialog designer. The dash

developer can click on the boxes in the data-
ow diagram and provide the de�nitions required

to con�gure the mapping method (e.g., subclasses, methods, and rules).

Figure 19. Sample rule de�nition from the con�guration of the mapping method for the

widget composer. This rule maps form-entry-field selectors for text to text-field widgets

with labels.

24

Figure 20. Dde allows the dash developer to inspect and edit the widget ontology.

25

Figure 21. The test panel in dde. The dash developer uses this panel to run diagnostic

tests on dash. By clicking on one of the operation buttons, the user can run the test case up

to the point selected.

6.3 Support for Test and Inspection

Dde provides functions for running test cases on dash, and for monitoring the results. Dde

runs dash in a controlled test mode, and allows the dash developer can inspect and verify

intermediate results. Currently, dde does not support automatic veri�cation of the interme-

diate results (i.e., consistency checking). Instead, dde is designed to provide the developer

powerful inspectors for the result. This looking-glass approach allows the developer to better

understand where and why problems occurred.

The �rst step in maintenance and debugging is often to reproduce a problem reported

under controlled circumstances. Therefore, dde provides a graphical interface for running

test cases. The button labeled \Test" on the dde main menu brings up the test panel

(Figure 21). This panel allows the user to run test cases based on typical input ontologies.

By clicking on the appropriate operation button, the user can run dash on the corresponding

test case up to the point selected. For instance, by clicking on the \Selectors" button for the

sisyphus.ont test case, the user will instruct dash to generate selectors from the Sisyphus

domain ontology (Linster, 1992). By default, the test panel shows a set of common test cases.

The dde developer can add new cases to the test panel readily by specifying the ontology

�les to use. Also, the dde user can specify explicitly any ontology �le as a test case. This

functionality is useful if a dash user encounters problems with a speci�c domain ontology.

The dash developer can then isolate the problem by running this ontology as a test case, and

inspecting intermediate results in dash.

When the test operation is completed, dde will open a window that provides an interactive

test protocol. The dde user can then interact with this protocol to inspect the intermediate

data structures produced by dash. Figure 22 shows a sample test protocol. By clicking on

the \Input ontology" button, the user can inspect the input to the dialog designer. Figure 23

26

Figure 22. An interactive test protocol from a test case. The dash developer can inspect

the state of dash after a test run by clicking on boxes and arrows in the protocol window.

The numbers below the boxes represent the number of items generated by dash for the test

case (e.g., 10 selectors and 14 widgets have been generated here).

Figure 23. The input ontology for the test case. USER is the top-level class.

shows the ontology for the Sisyphus room-assignment problem. This ontology de�nes the

classes PERSON, ROOM, and ROLE.1 Moreover, the user can inspect the internal representation

of the clsses by clicking on the appropriate items in the graph.

By clicking on the \Dialog structure" button, the user can inspect the dialog structure

generated from the input ontology. Figure 24 shows the dialog-structure inspector for the test

case. In this case, the dialog structure consists of the main menu, a list browser, and a form

for roles as de�ned in the ontology. (The classes PERSON and ROOM in the ontology do not

result in forms in the dialog structure, because the ka-specification facet for these classes

are speci�ed as ignore.) The user can inspect the representation for the items in the dialog

structure by clicking on them in the graph. Thus, the dde user can use the dialog-structure

graph and the inspectors to verify that the mapping from the input ontology to the dialog

structure is working correctly.

The dde user can examine the selector and widget structures generated by dash by

clicking on the \Selectors" and \Widgets" buttons on the test protocol, respectively. Figure 25

shows the selector structure for this test case. The main form has one FORM-BUTTON selector,

and the role-browser window has a single FORM-LIST-BROWSER selector. The role form contains

three FORM-SELECTION selectors (which allows the tool user to input Boolean values), and one

FORM-ENTRY-FIELD selector (which allows the user to input the role name).

1In this domain ontology, the term role describes the professional role of an o�ce worker (e.g., secretary,
and manager).

27

Figure 24. The dialog structure for the test case.

Figure 25. The selectors for the test case.

Figure 26 shows the widget structure after dash has mapped the selectors to widgets.

As shown in this inspector, dash has mapped the FORM-SELECTION selectors to CHECK-BOX

widgets, and the FORM-ENTRY-FIELD selector to a TEXT-FIELD widget and a DISPLAY-FIELD

widget, for example. (The rule shown in Figure 19 is responsible for the latter mapping.)

Note that dash has expanded the FORM-LIST-BROWSER selector to a set of four widgets,

which constitutes the browser.

By clicking on the nodes in the selector and widget structure windows, the dde user can

bring up inspectors for the underlying data structures. Figure 27 shows a sample inspector for

a check-box widget. The left column consists of slot names in the check-box widget class, and

the right column consists of slot values for the widget instance selected. The underlying lisp

system provides the implementation of this clos inspector. Therefore, the user can inspect

recursively structures shown in the inspector window.

The �nal generation step is to translate the window structure to the output format. Cur-

rently, we are using the editor-ontology (EO) format as the output of dash. Figure 28 shows

the inspector for the resulting EO structure. (Note that this format uses generic names for

windows and widgets.) Again, the dde user can click on nodes and inspect the content of

the underlying representation. The output of dash is a text �le that describes instances of

the editor ontology; dash uses a straightforward printing routine to produce the appropriate

syntax for the EO structure. Furthermore, dde allows the user to inspect the output of dash

in the textual format.

In summary, the interactive test protocol and its inspectors is a powerful tool for the

debugging of dash. A typical debugging strategy includes (1) the selection of an appropriate

28

Figure 26. The widgets for the test case.

Figure 27. Inspection of a check-box widget. For instance, the slots x-coord, y-coord,

width, and height represent the widget geometry. The slot label-string represent the

label for the check box (in this case, the slot value is \Large room").

29

Figure 28. The resulting EO structure for the test case. This graph provides an overview

of the EO representation. The node labeled [EO] represents the top-level EO structure. This

structure contains a list of the target-tool windows, in this case, [EO7], [EO2], and [MAIN].

Furthermore, each of these windows contains a list of its widgets. (For instance, the window

[EO7] contains the widgets EO8 through [EO12].)

test case (ontology), (2) the test execution of dash to an appropriate point, and (3) the

inspection of the intermediate data structures produced by dash. The dde user can then

use a divide-and-conquer strategy to locate the problem by inspecting the results before and

after the appropriate mapping steps. Moreover, the dde user can click on the arrows in

the test-protocol panel (Figure 22) to inspect the internal steps in each instantiation of the

mapping method, and to further narrow down the problem.

6.4 DDE Summary

We are currently using dde on a regular basis, and we have found dde to be extremely useful

for the maintenance of dash. Not only have the number of bugs decreased, but the time

required to correct a bug has been shortened signi�cantly. The most important factors for

this improvement are (1) the increased level of organization that the mapping method and its

graphical con�guration tool provide, and (2) the enhanced visibility and transparency of the

internal dash data structures the inspectors provide. Because dde incorporates a model of

the dash architecture in its user interface, dde allows the dash developer to navigate through

a complex application readily, and to understand the behavior of the system by inspecting the

results of the execution based on the architectural model. Although we are currently using

dde for general dash development, it is possible to use dde to extend dash to support the

functionality required for a speci�c domain. For instance, new (domain-speci�c) design rules

can be added to dash to extend the knowledge-acquisition support for a domain.

The dde approach to providing application-speci�c development and maintenance envi-

ronments is applicable potentially to other types of software. Analogous to domain-speci�c

knowledge-acquisition tools, application-speci�c development environments require a signi�-

cant tool-development e�ort for a single domain. However, metatools similar to dash can be

30

used generate such application-speci�c environments given an architectural description of the

target system, for instance.

7 Discussion

The role of dash within the prot�eg�e-ii framework is to assist the developer in the design

of domain-speci�c tools that domain specialists can use to edit instances of ontologies (i.e.,

to perform the detailed design of the system rather than the principal design; see Figure 2).

Other parts of the prot�eg�e-ii architecture support the de�nition of ontologies, and the reuse

of problem-solvingmethods (Puerta et al., 1992). Our motivation for using an ontology-driven

approach to the generation of knowledge-acquisition tools in dash is that we want to provide

the prot�eg�e-ii users with a general, yet easy-to-use metatool for generating domain-speci�c

knowledge-acquisition tools.

Compared to method-driven generation of knowledge-acquisition tools, such as the Spark

approach (Marques et al., 1992), ontology-driven generation allows the metatool to generate a

domain-speci�c, rather than method-speci�c, target tool. Domain-speci�c target tools incor-

porate domain concepts familiar to domain specialists (who are typically nonprogrammers),

rather than generic terms de�ned by programmers. Our approach di�ers from approaches to

model-based user-interface design in that dash is designed to produce a complete application

(the target tool) rather than produce a user interface for an application program developed

independently. Moreover, the dash architecture provides features for the high-level design of

the dialog structure, and for the persistent storage of custom adjustments.

Initially, we designed dash to generate domain-speci�c knowledge-acquisition tools from

domain ontologies (rather than from other types of ontologies). Nevertheless, we have used

dash to generate tools for other tasks. For instance, we have experimented with the gen-

eration of method-speci�c tools from ontologies of problem-solving methods. Such tools are

intended for developers (who are programmers) rather than for domain specialists, because

the tools incorporate extremely generic abstraction rather than application-speci�c terms

(Musen, 1989a).

The models that developers de�ne as domain ontologies for application systems are not

always unambiguous for the purpose of generating knowledge-acquisition tools. Although

domain ontologies provide most of the information required to generate basic knowledge-

acquisition tools, developers must annotate the ontologies with information related to know-

ledge acquisition. For instance, the developer must indicate the classes of domain concepts

that the target-tool user requires editors for directly under the main menu of the tool. In the

current version of dash, the developer provides this information as slot and class facets in the

ontology. The disadvantage of this approach is that the developer adds knowledge-acquisition

information to the domain ontology, which is supposed to provide a clean model of the domain,

and thereby makes the ontology impure. Thus, dash takes as input a combined model of the

domain and of the presentation and editing of instances of domain concepts. Annotating the

ontology with knowledge-acquisition information is a relatively simple technique for providing

this speci�cation. An alternative approach, which we are considering currently, is to specify

this information separately from the ontology, and to use this information together with the

ontology as input to dash. The advantage of the latter approach is that the developer can

generate several alternative tools from the same ontology.

The generation of a high-level dialog structure as an intermediate tool-generation step is

31

a salient feature of dash. To generate a nontrivial tool, it is essential to establish the rela-

tionships among the editors and windows of the target tool before instantiating their layouts,

because the layout-design process requires this information to generate appropriate buttons

and browsers. The dialog structure not only is important for the subsequent generation steps,

but also is useful for the developer. By examining the dialog structure graphically, the de-

veloper can understand the structure of the target tool. In our experiments with dash, the

developer has often discovered
aws in the domain ontology by inspecting the dialog structure.

Persistent storage of custom adjustments is an important feature that enables develop-

ers to re�ne the domain ontology incrementally. Without such persistent adjustments, the

developer cannot generate a new tool from a modi�ed ontology readily. Although dash's

approach of using a custom-tailoring database works well in most cases, there are situations

where discrepancies between the saved changes and the current domain ontology might occur.

Because dash matches the previous entries in the custom-tailoring database against the new

widgets generated by the layout designer, some records in the database might be obsolete

due to changes in the domain ontology. For instance, this situation arises when the developer

removes classes and slots from the ontology. In this case, dash ignores the corresponding in-

formation in the database. The other principal di�culty arises when the developer adds new

classes and slots to the ontology. Here, dash uses the information available in the database

as much as possible, and applies a default layout algorithm for the new widgets.

An important question for metalevel tools is how general the system is in terms of the

type of target tools the system can generate. To test the generality of the dash approach

for generation of knowledge-acquisition tools, we de�ned an ontology that models the domain

of ontologies. In other words, we de�ned metaclasses for the ontology. For example, we

de�ned the class ontology-class as the class of classes in the ontology. Each instance of

ontology-class includes a list of slot instances (of the class ontology-slot), as well as

other class attributes. We then applied dash to this metalevel ontology. With this input,

the output of dash is a knowledge-acquisition tool for the domain of ontologies|that is, the

output is an ontology editor. Next, we used this ontology editor to de�ne a new ontology.

To challenge the system, we entered the metalevel ontology in the ontology editor. The

output of the ontology editor is a set of instances of ontology-class, ontology-slot, and

so on. Because these ontology instances are expressed in the instance syntax, rather than in

the class-de�nition syntax, we used a small program (about one page of code) to translate the

instances to the appropriate syntax. After running this program on the instances produced

by the ontology editor, we got the original metalevel ontology. To complete the circle, we

again used this ontology as input to dash.

We have used dash to generate several knowledge-acquisition tools for di�erent domains

and tasks. The domains and tasks that we have modeled at this point include assignment of

o�ce workers to rooms, assignment of patients to hospital beds, con�guration of elevators, and

management of clinical-trial plans for aids treatment. The room-assignment and elevator-

con�guration problems are de�ned in the Sisyphus suite of standard problems for knowledge

acquisition and problem solving (Linster, 1992; Marcus, Stout & McDermott, 1988). The

knowledge-acquisition tool for the clinical-trial domain is designed for a signi�cant application

system (Musen, Carlson, Fagan, Deresinski & Shortli�e, 1992). Table 1 illustrates the size of

these knowledge-acquisition tools. Dash has provided signi�cant support for the development

of these tools, and has made it feasible to use domain-speci�c tools in these projects.

32

Table 1. Sizes of knowledge-acquisition tools generated by dash. The �gures refer to the

number of items for each tool and category.

Domain Ontology classes Dialog-structure items Selectors Widgets Windows

Sisyphus 1 3 3 10 14 3

Gate allocation 6 7 26 43 7

Bed assignment 5 5 19 29 5

UHaul 12 15 65 114 15

Sisyphus 2 (VT) 78 275 | | 38

T-Helper 76 133 | | 25

8 Conclusions

The generation of knowledge-acquisition tools from domain ontologies is an approach where

the developer reuses domain ontologies developed originally for application systems in the

generation of target tools. Tool generation from domain ontologies is an appropriate approach,

because developers can apply it in practical system development. To generate nontrivial tools,

we must extend the basic mapping from data types in the class de�nitions to user-interface

components with other functions, such as dialog design and custom adjustments. Persistent

custom adjustments provide another important function that makes the metatool useful in

iterative system development where the ontology is changing during the development process.

Dash demonstrates how we can combine these functions to a practical metatool.

From the developers' perspective, dash is easy to use, because it takes advantage of the

same ontology that is used in the run-time system, rather than requiring a separate, parallel

speci�cation for the target tool as input. As a metatool, dash combines generality in terms of

target tools with ease of use for the developer. The design support provided by dash's dialog-

designer module helps developers with the important task of designing the overall structure of

the knowledge-acquisition tool. The layout-designer module automates much of the tedious

task of implementing the user interface at the selector and widget levels. Finally, dash allows

the developer to custom tailor the target tool.

Although dash supports forms and list browsers in the tools it generates, a drawback

of the current version of dash is that there is no support for graph editors, and for corre-

sponding palettes. We are working on an extended version of dash that will overcome these

de�ciencies by incorporating appropriate mappings from the input ontology to instantiations

of a generic graph editor in the target tool. Despite these shortcomings, we believe that the

generation of knowledge-acquisition tools from domain ontologies is a
exible and viable ap-

proach, especially because we have used successfully the dash architecture to generate several

knowledge-acquisition tools for di�erent domains, and to custom tailor these tools to their

applications.

33

Acknowledgments

This work has been supported in part by grants LM05157 and LM05208 from the National

Library of Medicine, by grant HS06330 from the Agency for Health Care Policy and Research,

and by gifts from Digital Equipment Corporation and from the Computer-Based Assessment

Project of the American Board of Family Practice. Dr. Musen is recipient of National

Science Foundation Young Investigator Award IRI-9257578.

We thank John Egar , John Gennari , Thomas Rothen
uh , and Samson Tu for valuable

discussions on dash. We are grateful to Lyn Dupr�e for providing editorial assistance.

On-line information about prot�eg�e-ii and dash is available through a World-Wide-Web

(WWW) service (http://camis.stanford.edu/protege/).

References

de Baar, D. J. M. J., Foley, J. D. & Mullet, K. E. (1992). Coupling application

design and user interface design. In Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI '92), pp. 259{266, Monterey, CA. ACM, New York.

Eriksson, H. (1992). Metatool support for custom-tailored domain-oriented knowledge

acquisition. Knowledge Acquisition, 4, 445{476.

Eriksson, H. (1993). Speci�cation and generation of custom-tailored knowledge-acquisition

tools. In Proceedings of the Thirteen International Joint Conference on Arti�cial Intel-

ligence, IJCAI'93, pp. 510{515, Chamb�ery, Savoie, France.

Eriksson, H. & Musen, M. A. (1993). Metatools for knowledge acquisition. IEEE Soft-

ware, 10, 23{29.

Gennari, J. H., Tu, S. W., Rothenfluh, T. E. & Musen, M. A. (1994). Mapping

domains to methods in support of reuse. In Proceedings of the Eighth Ban� Knowledge

Acquisition for Knowledge-Based Systems Workshop, pp. 24.1{24.20, Ban�, Canada.

Johnson, J. (1992). Selectors: Going beyond user-interface widgets. In Proceedings of the

ACM Conference on Human Factors in Computing Systems (CHI '92), pp. 273{279,

Monterey, CA. ACM, New York.

Karbach, W., Linster, M. & Vo�, A. (1990). Models, methods, roles and tasks: Many

labels|one idea? Knowledge Acquisition, 2, 279{299.

Keene, S. E. (1989). Object-Oriented Programming in COMMON LISP: A Programmer's

Guide to CLOS. Massachusetts: Addison-Wesley.

Linster, M., Ed. (1992). Sisyphus'92: Models of Problem Solving, Technical Report 630,

Gesellschaft f�ur Mathematik und Datenverarbeitung (GMD), St. Augustin, Germany.

Marcus, S., Stout, J. & McDermott, J. (1988). VT: An expert elevator designer that

uses knowledge-based backtracking. AI Magazine, 9, 95{112.

34

Marques, D., Dallemange, G., Klinker, G., McDermott, J. & Tung, D. (1992).

Easy programming: Empowering people to build their own applications. IEEE Expert,

7, 16{29.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods.

In Marcus, S., Ed., Automating Knowledge Acquisition for Expert Systems, chapter 8,

pp. 225{256. Boston, MA: Kluwer Academic Publishers.

Musen, M. A. (1989a). Conceptual models of interactive knowledge acquisition tools. Know-

ledge Acquisition, 1, 73{88.

Musen, M. A. (1989b). An editor for the conceptual models of interactive knowledge-

acquisition tools. International Journal of Man{Machine Studies, 31, 673{698.

Musen, M. A., Carlson, R. W., Fagan, L. M., Deresinski, S. C. & Shortliffe,

E. H. (1992). T-HELPER: Automated support for community-based clinical research.

In Proceedings of the Sixteenth Annual Symposium on Computer Applications in Medical

Care, pp. 719{723, Washington, D.C.

Musen, M. A., Fagan, L. M., Combs, D. M. & Shortliffe, E. H. (1987). Use of a

domain model to drive an interactive knowledge-editing tool. International Journal of

Man{Machine Studies, 26, 105{121.

Neches, R., Fikes, R., Finin, T., Gruber, T., Senator, T. & Swartout, W. (1991).

Enabling technology for knowledge sharing. AI Magazine, 12, 36{56.

NeXT (1990). NeXTstep Concepts, NeXT Computer, Redwood City, CA.

Puerta, A. R., Egar, J. W., Tu, S. W. & Musen, M. A. (1992). A multiple-method

knowledge-acquisition shell for the automatic generation of knowledge-acquisition tools.

Knowledge Acquisition, 4, 171{196.

Puerta, A. R., Tu, S. W. & Musen, M. A. (1993). Modeling tasks with mechanisms.

International Journal of Intelligent Systems, 8, 129{152.

Steele Jr., G. L. (1990). Common LISP: The Language, second edition. Bedford, MA:

Digital Press.

Steels, L. (1990). Components of expertise. AI Magazine, 11, 28{49.

Tu, S. W., Kahn, M. G., Musen, M. A., Ferguson, J. C., Shortliffe, E. H. &

Fagan, L. M. (1989). Episodic skeletal-plan re�nement based on temporal data. Com-

munications of the ACM, 32, 1439{1455.

35

